首页> 中国专利> 机电变速器操作期间检测模式-档位失配的方法和装置

机电变速器操作期间检测模式-档位失配的方法和装置

摘要

本发明涉及机电变速器操作期间检测模式-档位失配的方法和装置,具体而言涉及一种用于操作动力系统的方法,包括:监测操作者输入;监测变速器输出;和在变速器输出的时间变化率超过阈值而所监测的操作者输入没有变化时,停止发动机操作模式。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-03-27

    授权

    授权

  • 2009-05-13

    实质审查的生效

    实质审查的生效

  • 2009-03-18

    公开

    公开

说明书

技术领域

[0001] 本披露总体上涉及用于机电变速器的控制系统。

背景技术

[0002] 该部分的内容仅提供与本披露有关的背景信息,且可能不构成现有技术。

[0003] 动力系统结构包括扭矩发生设备,包括内燃机和电机,其通过变速器设备传递扭矩给车辆传动系统。一种这样的变速器为双模式、复合分离、机电变速器,其采用:输入构件,所述输入构件用于从原动机动力源(通常为内燃机)接收驱动扭矩;和输出构件,所述输出构件用于从变速器传送驱动扭矩给车辆传动系统和车轮。可操作地连接到电能存储设备的电机包括电动/发电机,其可操作为产生驱动扭矩输入给变速器,与来自于内燃机的扭矩输入无关。电机还可以将通过车辆传动系统传递的车辆动能转换为可存储在电能存储设备中的电能。控制系统监测来自车辆和操作者的各个输入,并提供动力系统的可操作控制,包括控制变速器换档;控制扭矩发生设备;和调节电能存储设备和电机之间的电力互换。

[0004] 示范性的机电变速器通过起用扭矩传递离合器而可选择性地以固定传动比和连续可变操作模式操作,通常采用液压回路实现离合器起用。通常由于一个或更多扭矩传递离合器的起用,当变速器输出构件的旋转速度为来自发动机输入构件的旋转速度的固定比时,发生固定传动比操作。当变速器输出构件的旋转速度与输入构件的旋转速度的比可基于一个或更多电机的操作速度变化时,发生连续可变操作。电机可以经由离合器的起用连接到输出轴,或直接连接到输出轴。离合器起用和释放通常通过液压回路实现。

[0005] 电机可以经由离合器的起用连接到输出轴,或直接连接到输出轴。离合器起用和停用通常通过液压回路实现,所述液压回路包括由控制模块控制的电动液压流量管理阀、压力控制螺线管和压力监测设备。

[0006] 在操作期间,需要监测操作以识别命令操作范围状态和实际操作范围状态之间的失配。在这种情况下,模式-档位失配可能发生,包括例如在变速器实际以固定传动比操作时控制系统命令连续可变操作。当这种情况发生时,控制系统试图强制发动机速度为基于连续可变操作模式计算的最优速度。需要有效地识别失配的不存在,识别失配的存在,且减轻任何失配的效果。

发明内容

[0007] 一种车辆动力系统包括可操作地机械联接到内燃机的机电变速器。一种用于操作动力系统的方法包括监测操作者输入;监测变速器输出;和在变速器输出的时间变化率超过阈值而所监测的操作者输入没有变化时,停止发动机操作模式。

附图说明

[0008] 图1是根据本发明实施例的示范性动力系统的示意图;

[0009] 图2是根据本发明实施例的控制系统和动力系统的示范性结构的示意图;

[0010] 图3是根据本发明实施例的曲线图;

[0011] 图4是根据本发明实施例的液压回路的示意图;和

[0012] 图5是根据本发明实施例的算法流程图。

具体实施方式

[0013] 现在参见附图,其中所述视图仅用于图示说明本发明实施例的目的而不是为了限定本发明,图1和2示出了一种系统,所述系统包括发动机14、变速器10、传动系统90、控制系统、和根据本发明实施例构造的液压控制回路42(图4)。示范性混合动力系统设置为执行下文关于图5所示的控制策略。在共同受让的美国专利号6,953,409中详细公开了示范性变速器10的机械方面,所述专利在此作为参考引入。在图1中示出了体现本披露构思的示范性双模式、复合分离、机电混合变速器。变速器10包括输入轴12,优选为由内燃机14驱动的输入轴12具有输入速度NI;和输出轴64,所述输出轴64具有输出旋转速度NO

[0014] 示范性发动机14包括多缸内燃机,所述内燃机选择性地以几个状态操作以经由轴12传递扭矩给变速器,发动机14可以为火花点火式或压缩点火式发动机。发动机14包括具有特征速度NE的曲轴,所述曲轴可操作地连接到变速器输入轴12。当扭矩管理设备(未示出)设置在它们之间时,发动机的输出(包括速度NE和输出扭矩TE)可以不同于变速器输入速度NI和发动机输入扭矩TI

[0015] 变速器10包括三个行星齿轮组24,26和28、和四个扭矩传递设备,即离合器C1 70,C2 62,C3 73,和C4 75。液压控制系统42可操作控制离合器的起用和停用,液压控制系统42优选地由变速器控制模块(TCM) 17控制。离合器C2和C4优选地包括液压制动的旋转摩擦离合器。离合器C1和C3优选地包括液压制动的静止设备,所述固定设备接地到变速器外壳68。每个离合器优选地液压制动,从而经由电动液压控制回路42从泵88接收增压液压流体。

[0016] 包括电动/发电机56(称为MG-A)的第一电机和包括电动/发电机72(称为MG-B)的第二电机经由行星齿轮可操作地连接到变速器。每个电机包括定子、转子、解析器组件80,82。每个电机的定子接地到外部变速器外壳68,且包括定子核芯,所述定子核芯带有从其延伸的卷绕电绕组。MG-A 56的转子支撑在毂衬齿轮上,所述毂衬齿轮经由行星架26可操作地附接到输出轴60。MG-B 72的转子附接到套轴毂66。解析器组件80,82适当地定位并组装在MG-A 56和MG-B 72上。每个解析器组件80,82包括已知的可变磁阻设备,其包括解析器定子和解析器转子,所述解析器定子可操作地连接到每个电机的定子,所述解析器转子可操作地连接到每个电机的转子。每个解析器80、82包括感测设备,所述感测设备适于感测解析器定子相对于解析器转子的旋转位置,且识别所述旋转位置。来自解析器的信号输出被编译以提供MG-A56和MG-B 72的旋转速度(称为NA和NB)。变速器输出轴64可操作地连接到车辆传动系统90,以提供输出扭矩TO给车轮。变速器输出速度传感器84可操作监测输出轴64的旋转速度。每个车轮优选地配备有适于监测车轮速度的传感器94,传感器94的输出由控制系统监测并用于确定绝对车轮速度和相对车轮速度,以用于制动控制、牵引控制、和车轮加速管理。

[0017] 变速器10从扭矩发生设备(包括发动机14、MG-A 56和MG-B 72)接收输入扭矩(分别称为’TI’、’TA’、和’TB’),作为从燃料或存储在电能存储设备(ESD) 74中的电势的能量转换的结果。ESD74是经由DC传递导体27高压DC联接到变速器功率逆变器模块(TPIM)19。TPIM19是其后关于图2所述的控制系统的元件。TPIM19用传递导体29从MG-A 56来回传输电能,且TPIM19类似地用传递导体31从MG-B 72来回传输电能。电流根据ESD74是充电还是放电而传输给ESD74或从ESD74传输。TPIM19包括功率逆变器对和相应的电动机控制模块,所述电动机控制模块构造为接收电动机控制指令且根据其控制逆变器状态,以提供电动机驱动或再生功能。优选地,MG-A 56和MG-B72是各具有转子的三相AC电机,所述转子可操作在安装在变速器外壳上的定子内旋转。逆变器包括已知的互补三相功率电子设备。

[0018] 现在参见图2,示出了控制系统的示意性方块图,所述控制系统包括分布式控制模块结构。其后所述的元件包括总体车辆控制结构的子集,且可操作提供在此所述的动力系统的协调系统控制。控制系统可操作综合有关的信息和输入,且执行算法以控制各种致动器实现控制目标,包括诸如燃料经济性、排放物、性能、可驱动性、和硬件(包括ESD74电池以及MG-A 56和MG-B 72)保护的参数。分布式控制模块结构包括发动机控制模块(ECM)23、变速器控制模块(TCM) 17、电池组控制模块(BPCM) 21和TPIM19。混合控制模块(HCP) 5提供前述控制模块的总体控制和协调。用户接口(UI)13可操作地连接到多个设备,车辆操作者通常通过所述UI13控制或指导动力系统(包括变速器10)的操作,包括操作者扭矩请求(TO_REQ)和操作者制动请求(BRAKE)。UI13的示范性车辆输入设备包括油门踏板、制动踏板、变速器档位选择器和车辆速度巡航控制系统。每个前述控制模块经由局域网络(LAN)总线6与其它控制模块、传感器和致动器通信。LAN总线6允许控制参数和指令在各种控制模块之间的结构化通信。所采用的具体通信协议是依应用而定的。LAN总线和合适的协议用于在前述控制模块和提供诸如防抱死制动、牵引控制和车辆稳定性的功能的其它控制模块之间提供稳定信息传递和多控制模块交接。

[0019] HCP 5提供混合动力系统的总体控制,用于协调ECM23、TCM17、TPIM19和BPCM21的操作。基于来自UI 13和动力系统(包括电池组)的多个输入信号,HCP 5产生多个指令,包括:操作者扭矩请求(TO_REQ)、发动机输入扭矩TI、变速器10的N个不同扭矩传递离合器C1,C2,C3,C4的离合器扭矩(TCL_N);和MG-A 56和MG-B 72的电动机扭矩TA和TB。TCM17可操作地连接到电动液压控制回路42,以监测各种压力感测设备(未示出),产生并执行各个螺线管的控制信号,以控制其中所包含的压力开关和控制阀。

[0020] ECM23可操作地连接到发动机14,且用作从多个传感器获取数据并越过多个离散线路(集总地示出为集合线路35)控制发动机14的多个致动器。ECM23从HCP5接收发动机输入扭矩指令,且产生希望的轴扭矩和实际发动机输入扭矩表示TI给变速器,其传达给HCP5。为了简单起见,ECM23总体上示出为经由集合线路35与发动机14双向相接。由ECM23感测的多个其它参数包括发动机冷却剂温度、轴12的发动机输入速度NE(转换为变速器输入速度NI)、歧管压力、环境空气温度和环境压力。由ECM23控制的多个致动器包括燃料喷射器、点火模块和节气门控制模块。

[0021] TCM17可操作地连接到变速器10,且用作从多个传感器获取数据并提供指令信号给变速器。从TCM17到HCP5的输入包括N个离合器(即,C1,C2,C3,C4)中的每个所估计的离合器扭矩(TCL_N)、和输出轴64的旋转输出速度NO。可使用其它致动器和传感器,以从TCM提供附加信息给HCP以用于控制目的。TCM17监测来自压力开关的输入,并选择性地起用压力控制螺线管,并切换螺线管以起用多个离合器,从而实现多个变速器操作模式,如下文所述。

[0022] BPCM21信号连接一个或更多传感器,所述传感器可操作监测ESD74的电流或电压参数,以提供关于电池状态的信息给HCP5。这样的信息包括电池电荷状态、安培小时吞吐量、电池温度、电池电压和可利用的电池功率。

[0023] 前述控制模块中的每个优选为通用目的数字计算机(其总体上包括微处理器或中央处理单元);存储媒介(包括只读存储器(ROM)、随机存取存储器(RAM)、电编程只读存储器(EPROM));高速时钟;模拟-数字转换(A/D)和数字-模拟转换(D/A)电路;以及输入/输出电路和设备(I/O)和合适的信号调节和缓冲电路。每个控制模块具有一组控制算法,所述控制算法包括常驻程序指令和校准,其存储在ROM中且被执行提供每个计算机的相应功能。各个计算机之间的信息传递优选地使用前述LAN总线6完成。

[0024] 在每个控制模块中,用于控制和状态估计的算法通常在预定循环周期期间执行,以便每个算法在每个循环周期执行至少一次。存储在非挥发性存储设备中的算法通过中央处理单元之一执行且可操作监测来自感测设备的输入,并使用预定校准来执行控制和诊断例程以控制相应设备的操作。循环周期通常以规则间隔进行,例如在进行中的发动机和车辆操作期间每3.125,6.25,12.5,25和100毫秒。可替换地,算法可响应于事件发生而被执行。

[0025] 现在参见图3,示范性双模式、复合-分离机电变速器以几个操作范围状态之一操作,所述操作范围状态包括固定传动比操作和连续可变操作(参见表1描述如下)。

表1

[0026] 表中所述的各个变速器操作范围状态表示对每个操作范围状态哪些具体的离合器C1,C2,C3,C4被接合或起用。当离合器C1 70被施用以将第三行星齿轮组28的外齿轮构件“接地”时,选定第一连续可变操作范围状态,即模式I。发动机14可以运行或停机。当离合器C1 70被释放且离合器C2 62同时起用以将轴60连接到第三行星齿轮组28的行星架时,选定第二连续可变操作范围状态,即模式II。同样,发动机14可以运行或停机。为了描述,发动机停机由发动机输入速度NE等于0转/分(RPM)定义,即,发动机曲轴未旋转,通常由于发动机从变速器分离。本披露的范围之外的其它因素影响电机MG-A 56和MG-B72何时操作为电动机和发电机,且在此不讨论。

[0027] 模式I和II特征在于单个离合器施用(即,C1 62或C2 70)和电机56和72的受控速度和扭矩控制,可以称为连续可变变速器模式。一些操作范围状态在下文描述,其中固定传动比借助于施用附加离合器实现。该附加离合器可以是离合器C3 73或C4 75,如上表所示。当附加离合器施用时,实现变速器输入-输出速度(即NI/NO)的固定比操作。在固定传动比操作期间,电机MG-A 56和MG-B 72的转速(即,NA和NB)取决于由离合动作所限定的机构的内部旋转且与轴12处测量的输入速度成正比。

[0028] 响应于由UI13捕获的操作者的动作,监督的HCP控制模块5和一个和更多的其它控制模块确定将在轴64处执行的操作者扭矩请求。最终车辆加速受其它因素影响,包括例如道路载荷、道路坡度和车辆质量。对示范性变速器基于动力系统的多个操作特性确定变速器操作范围状态。这包括操作者扭矩需求,通常通过输入传达给UI13,如前所述。此外,输出扭矩需求基于外部条件判定,包括例如道路坡度、道路表面状况或风力载荷。变速器操作范围状态可以基于由控制模块指令引起的动力系统扭矩需求判定,以将电机之一操作为发电机或电动机。变速器操作范围状态可以用优化算法或例程确定,所述优化算法或例程可操作根据操作者动力需求、电池电荷状态、和发动机14以及MG-A 56和MG-B 72的能量效率确定最优系统效率。控制系统基于所执行的优化例程的结果管理来自发动机14以及MG-A 56和MG-B 72的扭矩输入,且进行系统优化以优化系统效率从而改进燃料经济性并管理电池充电。另外,操作可以根据部件或系统中的故障确定。HCP5监测扭矩发生设备的参数状态,且确定达到希望扭矩输出所需要的变速器输出,如下文所述。在HCP5的指导下,变速器10操作跨过从慢到快的输出速度范围以满足操作者需求。

[0029] 能量存储系统和电机MG-A 56和MG-B 72电气可操作地联接以用于它们之间的动力流。此外,发动机、电机和机电变速器被机械可操作地联接,以在它们之间传递动力并产生动力流给输出。在模式I操作中,变速器操作为输入分离的电动无级变速器(EVT)。在模式II操作中,变速器操作为复合分离的EVT。当以这两个模式之一操作时,控制系统对发动机速度进行闭环控制,这优化燃料经济性同时还满足扭矩请求和给定的动力约束。它然后命令电动机速度改变输入-输出速度比以响应于操作者扭矩请求使车辆加速。通过使用两个附加离合器,变速器也能够实现4个固定传动比之一。当以固定传动比操作时,车辆用作并联混合,且电动机仅用于助推和制动/再生车辆。

[0030] 参见图4,示出了在示范性变速器中用于控制液压流体流量的示范性电动液压系统的更详细描述的示意图。主液压泵88(由发动机14的输入轴12驱动)和辅助泵110(由TPIM19可操作地电控制)通过阀140提供增压流体给液压回路42。辅助泵110优选地包括具有合适尺寸和容量的电动泵,以在操作时提供足够流量的增压液压流体到液压系统中。增压液压流体流入电动液压控制回路42,所述电动液压控制回路42可操作以选择性地将液压压力分配给一连串设备,包括扭矩传递离合器C1 70,C2 62,C3 73,C4 75、电机A和B的主动冷却回路、和用于经由通道142,144(未详细示出)冷却并润滑变速器10的基部冷却回路。如前文所述,TCM17通过选择性起用液压流体流量控制设备(包括压力控制螺线管(PCS) PCS1 108,PCS2 112,PCS3 114,PCS4116和螺线管控制的流量管理阀X-阀119和Y-阀121)而起用多个离合器以实现多个变速器操作。该回路分别经由通道124,122,126和128流体连接到压力开关PS1,PS2,PS3和PS4。有进口滑阀107。压力控制螺线管PCS1 108具有通常高的控制位置,且通过与可控压力调节器109流体相互作用可操作调节液压回路中的流体压力。可控压力调节器109(未详细示出)与PCS1 108相互作用,以根据其后所述的操作条件在一定压力范围上控制液压回路42中的液压压力。压力控制螺线管PCS2112具有通常低的控制位置,且流体连接到滑阀113并在起用时可操作实现通过其的流动。滑阀113经由通道126流体连接到压力开关PS3。压力控制螺线管PCS3 114具有通常低的控制位置,且流体连接到滑阀115并在起用时可操作实现通过其的流动。滑阀115经由通道124流体连接到压力开关PS1。压力控制螺线管PCS4 116具有通常低的控制位置,且流体连接到滑阀117并在起用时可操作实现通过其的流动。滑阀117经由通道128流体连接到压力开关PS4。

[0031] 在示范性系统中,X-阀119和Y-阀121各包括分别由螺线管118,120控制的流量管理阀,且具有高(1)和低(0)的控制状态。控制状态是指每个阀的位置,借助于所述控制状态来控制到液压回路42和变速器10中不同设备的流量。取决于流体输入源,X-阀119可操作分别经由流体通道136,138,144,142将增压流体引导给离合器C3和C4以及MG-A 56和MG-B 72的定子的冷却系统,如下文所述。取决于流体输入源,Y-阀121可操作分别经由流体通道132和134将增压流体引导给离合器C1和C2,如下文所述。Y-阀121经由通道122流体连接到压力开关PS2。示范性电动液压控制回路42的更详细说明在共同受让的美国专利申请No.11/263,216中提供,所述申请作为参考引入。

[0032] 参见下表2提供了实现示范性电动液压控制回路42的控制的示范性逻辑表。

表2

 

X-阀逻辑Y-阀逻辑PCS1PCS2PCS3PCS4操作状态没有闭锁C2闭锁通常高通常高通常高通常低         模式I(MI) 0 0        线性调整MG-B定子        冷却      C1MG-A定子        冷却    模式II      (MII)  0 1        线性调整  C2MG-B定子        冷却    MG-A定子        冷却    低范围  FG1,FG2MI,MII  1 0        线性调整  C2  C1  C4高范围  FG3,FG4MI,MII  1 1        线性调整  C2  C3  C4

[0033] X-阀和Y-阀的选择性控制和螺线管PCS2,PCS3和PCS4的起用利于液压流体流动以起用离合器C1,C2,C3,C4并为MG-A 56和MG-B 72的定子提供冷却。

[0034] 操作中,对示范性变速器基于动力系统的各种操作特性确定固定传动比和连续可变操作范围状态之一。这包括操作者扭矩需求,通常通过输入传达给UI13,如前所述。此外,输出扭矩需求基于外部条件判定,包括例如道路坡度、道路表面状况或风力载荷。变速器操作范围状态可以基于由控制模块指令引起的动力系统扭矩需求判定,以将电机操作为发电机或电动机。操作可以用优化算法或例程确定,所述优化算法或例程可操作根据操作者动力需求、电池电荷状态、和发动机14以及MG-A 56和MG-B 72的能量效率确定最优系统效率。控制系统基于所执行的优化例程的结果管理来自发动机14以及MG-A 56和MG-B72的扭矩输入,且进行系统优化以优化系统效率从而改进燃料经济性并管理电池充电。另外,操作可以根据部件或系统中的故障确定。

[0035] 现在参见图1、2、3和4以及表1和2所述的变速器,在此描述变速器和控制系统的具体方面。控制系统可操作基于扭矩需求、故障存在和电动机温度来选择性地起用压力控制设备和流量管理阀。控制系统基于X-阀119和Y-阀121流量管理阀的选择性起用而选择性地命令低范围连续可变操作、高范围连续可变操作、低范围状态、和高范围状态中的一个。当已经命令低范围连续可变操作时,控制系统基于压力控制设备PCS2,PCS3和PCS4的选择性起用而实现第一电机(MG-A定子冷却)的定子冷却系统、第二电机(MG-B定子冷却)的定子冷却系统、和第一液压致动离合器(C1)的起用。此外,当已经命令高范围连续可变操作时,控制系统基于压力控制设备的选择性起用而可操作实现MG-A56的定子冷却系统、MG-B72的定子冷却系统、和第二液压致动离合器(C2)的起用。当已经命令低范围状态(包括经由离合器的选择性起用而以FG1,FG2,MI和MII之一操作)时,控制系统基于压力控制设备的选择性起用而可操作实现第一、第二和第四液压致动离合器(即,C1,C2,C4)的起用。当已经命令高范围状态(包括经由离合器的选择性起用而以FG2,FG3,FG4,MI和MII之一操作)时,控制系统基于压力控制设备的选择性起用而可操作实现第二、第三和第四液压致动离合器(即,C2,C3,C4)的起用。

[0036] 如前所述,根据第一和第二流量管理阀的命令位置,第二、第三和第四压力控制设备(即,PCS2,PCS3和PCS4)的每个的流体输出选择性地映射到四个液压致动离合器以及MG-A56和MG-B72的定子冷却系统之一。因而,当X-阀和Y-阀均命令为低时,PCS2的选择性起用实现提供冷却给MG-B72的定子的液压流体流量。当X-阀和Y-阀中任一个命令为高时,PCS2的选择性起用实现起用离合器C2的液压流体流量。当X-阀和Y-阀均命令为低时,PCS3的选择性起用实现起用离合器C1的液压流体流量。当X-阀命令为低而Y-阀命令为高时,PCS3的选择性起用实现提供冷却给MG-B72的定子的液压流体流量。当X-阀命令为高而Y-阀命令为低时,PCS3的选择性起用实现起用离合器C1的液压流体流量。当X-阀和Y-阀均命令为高时,PCS3的选择性起用实现起用离合器C3的液压流体流量。当X-阀命令为低时,不管Y-阀被命令为哪个位置,PCS4的选择性起用实现提供冷却给MG-A56的定子的液压流体流量。当X-阀命令为高时,不管Y-阀与被命令为哪个位置,PCS4的选择性起用实现起用离合器C4的液压流体流量。

[0037] 当控制系统命令以连续可变操作范围状态(即,模式I或模式II)之一操作时,控制系统采用闭环控制来控制发动机操作,发动机速度控制为最优速度Ni_opt。最优速度根据与扭矩输出、燃料经济性、操作者扭矩请求和电池电荷状态有关的因素确定。当围绕发动机速度进行闭环控制时,控制系统监测发动机输入速度Ni和轴64处的变速器输出,并调节MG-A56和MG-B72的输出扭矩以满足操作者扭矩请求。

[0038] 潜在动力系统故障包括变速器的命令操作范围状态和实际操作状态之间的失配。这包括控制系统命令以连续可变操作范围状态之一操作,而变速器实际上以固定传动比操作范围状态之一操作。这称为模式-档位失配。在进行中的操作期间,控制系统命令连续可变操作范围状态(模式I或模式II)之一,如表2所示。

[0039] 操作中,机电变速器由控制模块之一命令,以便通过离合器C1或离合器C2的选择器起用以连续可变操作范围状态(模式I或模式II)之一操作。监测变速器操作,包括各个元件的旋转速度(包括NI、NO、NA和NB)。变速器的命令操作范围状态和实际操作状态之间的失配的不存在根据所监测的变速器操作确定。变速器的命令操作范围状态和实际操作状态之间的失配的存在根据所监测的变速器操作确定。当检测到变速器的命令操作范围状态和实际操作状态之间的失配时,修正内燃机的命令操作。现在详细描述。

[0040] 检测模式-档位失配的第一策略包括借助于监测离合器滑移量来肯定地确定模式-档位失配的不存在。该检测策略包括在以模式I和II之一稳态操作期间监测并检测离合器滑移量,其中仅施用(即,命令起用)单个离合器。在操作期间,仅单个离合器(即,C1或C2)预期在任何给定时间周期期间显示离合器滑移量为0或接近0。当对一定时间长度在离合器上有显著的滑移量时,可以确定具体的离合器未起用,没有模式/档位失配。因而,在模式I中,离合器C1被命令起用,在每个离合器C2、C3和C4上存在滑移。因而,在模式II中,离合器C2被命令起用,在每个离合器C1、C3和C4上存在滑移。当对未命令起用的离合器确定这样的滑移状况时,控制策略确认模式-档位失配的不存在。然而,如果发生这样的状况,其中,确定一个未起用的离合器具有0或接近0的滑移速度的滑移量时,那么有可能离合器被起用,从而引起模式-档位失配。在每个离合器上的滑移量根据NI、NO、NA和NB的各个旋转速度确定。

[0041] 检测模式-档位失配的第二策略包括借助于监测发动机输入速度来肯定地确定模式-档位失配的不存在。在以模式I或模式II操作期间,控制系统控制输入速度Ni为计算出的最优发动机速度Ni_opt。在围绕最优输入速度Ni_opt的闭环控制中,输入速度预期为遵循最优速度轮廓。在模式-档位失配的情况下,在当前发动机速度Ni和最优输入速度Ni_opt之间很可能有显著的差异(是可测量和可检测的)。因而,当输入速度Ni遵循最优输入速度Ni_opt时,控制策略确认模式-档位失配的不存在。

[0042] 当第一和第二策略的结果不能确认模式-档位失配的不存在时,执行附加的策略以检测模式-档位失配的存在。例如,在稳态操作期间,可能发生车辆操作者不能察觉的或导致轻的加速事件的模式-档位失配。

[0043] 用于检测模式-档位失配的第三策略包括借助于监测来自两个电机的电动机扭矩来肯定地检测模式-档位失配的存在。在以模式I或模式II操作期间,控制系统计算两个电机实现最优闭环发动机速度控制Ni_opt所需要的电动机扭矩。

[0044] 用于检测模式-档位失配的第四策略包括借助于监测离合器滑移量以检测0滑移条件来肯定地检测模式-档位失配的存在。在模式操作期间,未被起用的离合器应当具有一些滑移量。借助于监测离合器滑移量,可以确定0滑移条件。当输出速度未减速时,那么待接合的离合器的滑移速度将最终达到接近0的速度(稳态),甚至在模式-档位失配期间也是如此。因而,当未施用的离合器中没有离合器滑移量时,控制策略检测到模式-档位失配。

[0045] 现在参见图5所示的流程图,参见图1、2、3以及表1和2所述的示范性变速器,描述检测模式/档位失配(更具体而言,检测引发车辆减速的模式/档位失配)示范性变速器和控制系统的控制操作的具体方面。流程图变为在一个控制模块中周期性地执行的程序代码。变速器的命令操作范围状态和实际操作状态之间的失配的存在根据所监测的变速器操作检测。当检测到变速器的命令操作范围状态和实际操作状态之间的失配时,修正动力系统的命令操作;在该实施例中,修正内燃机的操作。现在详细描述。

[0046] 在该操作中,机电变速器被命令以连续可变(CV)操作模式(即模式I或模式II)之一操作,且发动机以闭环速度控制模式操作(502)。监测操作,包括适于监测MG-A56和MG-B72的输入速度和扭矩、输出轴速度NO(使用变速器输出速度传感器84)、和车轮速度。监测通过油门踏板的操作者扭矩请求(TO_REQ)和制动请求(BRAKE)(504)。监测并估算输出轴速度NO中的时间变化率。输出轴速度NO通过传动系统90直接转换为车轮速度。车轮速度的快速变化(增加或降低)是车辆操作者可察觉的(以g-力形式)。在此所述的系统中,目的在于在其发生200毫秒内检测并减轻超过阈值0.3g或大约3米/秒2(m/s2)的无意g-力。因而,确定加速度阈值,加速度阈值将阈值g-力转换为输出轴旋转速度中的变化。

[0047] 所监测的速度变化(ΔNO/Δt)与加速度阈值比较,以确定是否发生减速(506)。比较优选地基于绝对值,以适合加速和减速两种情况。当未检测到减速时,没有模式-档位失配,且没有采取动作(507)。当速度变化超过阈值时,控制模块确认没有外部因素或命令驱动或促使速度变化。因而,确定油门踏板的操作者输入是否变化(508),和制动踏板的操作者输入是否增加(表示制动请求)(510)。如果一个或两者均变化,那么不采取动作(509)。在输出速度有变化而动力系统的操作者输入没有变化的情况时,那么操作继续以确定是否存在模式-档位失配(512)。

[0048] 引发减速的模式-档位失配将具有几个特性,包括可以观察到在未施用离合器上的过大扭矩。对于模式I和模式II操作而言,控制系统计算两个电动机实现闭环发动机速度控制所需要的电动机扭矩。根据该计算和当前电动机扭矩,计算每个电动机和每个离合器的“过大扭矩”。如果在不应当施用的离合器上有显著数量的过大扭矩,那么可能发生模式-档位错误(514)。当没有过大扭矩时,未发生减速模式-档位失配。

[0049] 在由于模式-档位失配引起的减速事件期间,待接合的离合器由于系统滞后最初未完全施用。因而,跟稳态检测不一样,离合器滑移速度并不指示接近0的滑移速度。然而,指示快速趋于0的离合器滑移速度。因而,减速检测需要离合器滑移速度大小高于一定阈值且滑移加速度必须显示趋于0的趋势。当这两个条件是真时,可能发生减速模式-档位失配,相反,当这两个条件不是真时,那么未发生减速模式-档位失配(516,518)。潜在的错误故障可以借助于确定车辆车轮最近是否滑移(例如,在预定事件周期内,通常以秒测量)来避免。当车辆轮胎滑移时(例如,加速离开雪地运动到干路面),TOSS传感器显示了输出速度的快速降低,因而检测到减速。观察来自车轮速度传感器94的输入以确定车辆轮胎在过去的X秒内是否旋转(即,识别NWHL滑移的存在)。在这样的情况下,随后的减速不确定为减速模式-档位失配(520)。

[0050] 当经历并检测到模式-档位失配(以变速器输出的时间变化率超过阈值而所监测的操作者输入没有变化所表示)时,动力系统的操作优选地及时地修正(522)。在该实施例中,即刻动作为控制系统停止以闭环速度控制模式操作发动机,以减小从发动机到机电变速器的扭矩输入。这包括发送软件控制标记给控制系统以停用闭环发动机控制,且随后借助于使仪表板灯发光通知操作者。随后检测到的肯定通过信号(即,执行第一或第二策略的结果)导致可校准时间长度的通过条件,优选地重新允许闭环发动机控制。可替换地,其它发动机操作模式可以停止,以立即降低变速器的发动机输入扭矩,包括延迟火花提前,降低发动机燃料供应、和使用与进气和/或排气发动机气门的定时、持续时间和升程相关的各种气门控制技术调节发动机气门的打开和关闭。

[0051] 优选地,肯定地确定模式-档位失配的不存在和肯定地确定模式-档位失配的存在具有不同的条件。因而,可以有这样的条件,其中车辆既可以确定模式-档位失配的不存在,同时也可以确定模式-档位失配的存在。这可能在短时间窗口期间当车辆经历尖锐的减速时,由于仍具有高于通过条件阈值的滑移速度的待接合离合器而发生。为此,停用闭环速度控制的动作继续,直到通过条件已经满足可校准的时间,通常小于4秒。如果离合器继续施用,离合器滑移速度在可校准时间量内下降低于至通过条件阈值,且发动机闭环保持停用。如果离合器不再施用,测试继续通过,重新允许发动机闭环控制。

[0052] 本发明已经具体参考所披露的优选实施例及其变型描述。在阅读和理解说明书之后,可以想到进一步的变型和修改。因而,将包括落入本发明范围内的所有这样的变型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号