首页> 中国专利> 可变增益放大器电路及DC偏移校正方法和无线电接收设备

可变增益放大器电路及DC偏移校正方法和无线电接收设备

摘要

根据本发明的实施例的可变增益放大器电路,包括:输出偏移校正单元,用于执行用于减小在放大单元的输出电压中包含的DC偏移当中的与可变增益放大器电路的增益改变无关的固定偏移分量的校正;以及输入偏移校正单元,用于执行用于减小随放大单元的增益而变化的输入偏移分量的校正。使用输出偏移校正单元对固定偏移分量的校正和使用输入偏移校正单元对输入偏移分量的校正是独立执行的。

著录项

  • 公开/公告号CN1881788A

    专利类型发明专利

  • 公开/公告日2006-12-20

    原文格式PDF

  • 申请/专利权人 恩益禧电子股份有限公司;

    申请/专利号CN200610092796.3

  • 发明设计人 大庭英雄;

    申请日2006-06-14

  • 分类号H03G3/30(20060101);H03F3/34(20060101);

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人孙志湧;陆锦华

  • 地址 日本神奈川

  • 入库时间 2023-12-17 18:04:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-08-12

    未缴年费专利权终止 IPC(主分类):H03G3/30 授权公告日:20101208 终止日期:20140614 申请日:20060614

    专利权的终止

  • 2010-12-08

    授权

    授权

  • 2007-02-14

    实质审查的生效

    实质审查的生效

  • 2006-12-20

    公开

    公开

说明书

技术领域

本发明涉及可变增益放大器电路。本发明特别涉及可变增益放大器电路以及可变增益放大器电路的DC偏移校正方法,用于校正在放大器电路的输出信号中包含的DC偏移。

背景技术

已经知道,由于MOS晶体管之间的栅宽度变化导致的作为差分对的MOS晶体管之间的阈值电压不匹配、作为差分放大器电路的组件的负载电阻器之间的不匹配等等,由MOS晶体管组成的差分放大器电路在输出电压中具有DC偏移。

目前已经知道对这种差分放大器电路的输出电压中包含的DC偏移进行校正的方法。例如,日本未核专利申请公开第9-64666号中公开了一种可变增益放大器电路,其包括具有可变增益功能的差分放大器电路并且校正输出电压的DC偏移。

在日本未核专利申请公开第9-64666号中公开的可变增益放大器电路被构造为在偏移检测模式和信号放大模式之间进行切换,并且偏移存储单元存储在偏移检测模式中检测到的DC偏移量。这里,术语“偏移存储单元”是指:电容器,用于将DC偏移量作为模拟值进行存储和输出;以及存储器,用于存储与D/A转换器(DAC)输出的DC偏移校正电压相对应的数字值。此外,在信号放大模式中,执行这样的DC偏移校正使得将如下信号电压施加到信号放大单元,其中从所述信号电压中减去与存储在偏移存储单元中的DC偏移量相对应的输出电压。

不过,DC偏移量随信号放大单元的增益而变化。因此,在日本未核专利申请公开第9-64666号中公开的现有可变增益放大器电路面临如下问题,即应该在改变增益时再次将DC偏移量存储在偏移存储单元中。下面参考图14来讨论该问题。

图14示出了现有可变增益放大器电路8的结构。放大单元81是具有可变增益功能的差分放大器电路。增益切换单元82根据增益切换信号来切换放大单元81的增益。此外,输入偏移校正单元83是如下电路,其用于从放大单元81的输入信号电压减去如下所述的输入偏移校正电压VOC_in,以防止DC偏移。

DC偏移VOS包括:固定偏移分量VOS_fix,它是固定的,与由负载电阻器或放大单元81的电流源的变化导致的增益改变无关;以及输入偏移分量VOS_in,其依赖于诸如差分对的阈值电压变化等输入端的变化,并且与增益成正比地改变。也就是说,作为放大单元81的增益A的函数,电压VOS可以通过下面的表达式(1)来表示。

VOS(A)=VOS_in*A+VOS_fix    ......(1)

可变增益放大器电路8通过从放大单元81的输入信号电压中减去输入偏移校正电压VOC_in来执行DC偏移校正,使得从表达式(1)得到的电压VOS等于0。也就是说,为确定校正电压VOC_in而建立下面的表达式(2):

VOS(A)=(VOS_in-VOC_in)*A+VOS_fix=0  ......(2)

根据上述的表达式(2),使电压VOS为零的电压VOC_in可以通过下面的表达式(3)来表示。由表达式(3)表示的校正电压VOC_in存储在输入偏移校正单元83中,并且可以通过从放大单元81的输入信号电压中减去计算的电压VOC_in来抑制DC偏移VOS的生成。

VOC_in=VOS_fix/A+VOS_in  ......(3)

不过,从表达式(3)可以明显看出,输入偏移校正电压VOC_in取决于放大单元81的增益A。因此,在改变增益A时,应该改变用于校正偏移的输入偏移校正电压VOC_in的值。因此,现有可变增益放大器电路8在改变放大单元81的增益时,需要将校正电压再次存储在输入偏移校正单元83中。

例如,如果输入偏移校正单元83将校正电压VOC_in存储在电容器中,则需要足够的时间再次将电容器充电到对应于DC偏移量的电压。另外,如果输入偏移校正单元83是DAC,则需要足够的时间根据放大单元81的输出信号来确定DC偏移量,需要足够的时间根据确定的DC偏移量来控制DAC,或者需要足够的时间从存储器中读取作为每一个增益的校正量事先记录的校正值,并且再次将该值设置到DAC。

如上所述,每次增益改变时,现有可变增益放大器电路应该执行DC偏移校正,并且改变增益所需的时间受到偏移校正时间的限制。这引起的问题在于,增益无法高速地改变。

例如,符合IEEE802.11a或其他这种无线LAN标准的无线电通信设备的接收器需要在有限的前导码时间段(preamble period)改变增益和调节DC偏移,以便在前导码时间段之后放大接收信号。结果,存在一种可能性,即如果需要花费许多时间来改变增益,则在前导码时间段没有完成接收准备。

顺便说一下,在有些结构中,用于削去DC分量的电容器被插入到可变增益放大器电路的输出端,从而削去输出电压的DC分量。同样在这种情况下,当对电容器进行充电时,需要花费许多时间将DC偏移收敛到零。因此,这种结构不适合于需要高速切换增益的可变增益放大器电路。

如上所述,每当改变可变增益放大器电路的增益时需要重新校正DC偏移的现有可变增益放大器电路具有如下问题,即需要花费许多时间对DC偏移进行重新校正,因此无法高速改变增益。

发明内容

根据本发明的一个方面的可变增益放大器电路包括:放大单元,其能够切换增益;以及校正控制单元,其单独地执行用于减小放大单元的输出电压中包含的DC偏移当中的与放大单元的增益改变无关的固定偏移分量的校正,以及用于减小与放大单元的增益成正比的输入偏移分量的校正。

采用这种结构,与可变增益放大器电路的增益无关的固定偏移分量的校正和随该增益变化的输入偏移的校正可以单独进行。通过这种偏移校正,固定偏移分量的校正电压和输入偏移分量的校正电压与增益无关。因此,即使在改变可变增益放大器电路的增益时不再次执行偏移校正,也能继续抵消DC偏移。因此,根据本发明的可变增益放大器电路在切换增益时,不需要再次执行偏移抵消操作,因此增益控制速度不受偏移抵消操作的限制,并且可以高速地切换增益。

此外,根据本发明的另一个方面,用于减小能够切换增益的差分放大器电路的输出电压中包含的DC偏移的DC偏移校正方法包括:执行用于减小DC偏移当中的与差分放大器电路的增益改变无关的固定偏移分量的校正;以及执行用于减小随差分放大器电路的增益变化的输入偏移分量的校正。

采用该DC偏移校正方法,固定偏移分量的校正电压和输入偏移分量的校正电压与增益无关。因此,即使在改变可变增益放大器电路的增益时不再次执行偏移校正,也能继续抵消DC偏移。因此,能够通过实施本发明的DC偏移校正来实现在改变增益时不需要重新校正DC偏移的可变增益放大器电路。

根据本发明,可以提供在改变增益时不需要重新校正DC偏移的可变增益放大器电路。

附图说明

下面结合附图来进行讲述,会使本发明的上述和其他目的、优点和特征更加清楚,其中:

图1为根据本发明的第一实施例的可变增益放大器的电路图;

图2为根据本发明的第一实施例的DC偏移校正方法的流程图;

图3为根据本发明的第一实施例的可变增益放大器的电路图;

图4为根据本发明的第一实施例的可变增益放大器的电路图;

图5为根据本发明的第二实施例的可变增益放大器的电路图;

图6为校正控制单元的电路图;

图7示出了DC偏移是如何收敛的;

图8为根据本发明的第三实施例的可变增益放大器的电路图;

图9示出了DC偏移是如何收敛的;

图10为根据本发明的第三实施例的可变增益放大器的电路图;

图11为根据本发明的第四实施例的可变增益放大器的电路图;

图12为根据本发明的第五实施例的可变增益放大器的电路图;

图13为根据本发明的第六实施例的可变增益放大器的电路图;以及

图14为现有可变增益放大器的电路图。

具体实施方式

现在,将参考解释性实施例来讲述本发明。本领域的技术人员都知道,使用本发明的讲解可以实现许多可替代的实施例,并且本发明并不限于用于解释性目的的实施例。

根据本发明的第一实施方式的可变增益放大器电路包括:放大单元,其能够进行增益切换;以及校正控制单元,其执行用于减小放大单元的输出电压中包含的DC偏移的校正。这里,校正控制单元单独地执行用于减小放大单元的输出电压中包含的DC偏移当中的与放大单元的增益改变无关的固定偏移分量的校正,以及用于减小与放大单元的增益成正比的输入偏移分量的校正。

此外,在根据第一实施方式的可变增益放大器电路中,校正控制单元优选地在校正固定偏移分量之后校正输入偏移分量。

更具体地说,在设置放大单元的增益时可以校正固定偏移分量,使得在放大单元的输出电压中不包含输入偏移分量。

顺便说一下,在本发明的下述第一实施例中,输入偏移校正单元13和输出偏移校正单元14对应于根据第一实施方式的可变增益放大器电路的校正控制单元。

下面将参考附图来详细讲述本发明的实施例。

第一实施例

图1示出了根据本发明的第一实施例的可变增益放大器电路1的结构。这里,放大单元11是能够进行增益切换的差分放大器电路。增益切换单元12根据增益切换信号来切换放大单元11的增益。此外,输入偏移校正单元13是用于从放大单元11的输入信号中减去下述输入偏移校正电压VOC_in以防止DC偏移的电路。此外,输出偏移校正单元14是用于从放大单元11的输出信号中减去输出偏移校正电压VOC_out以防止DC偏移的电路。

下面参考图2的流程图,来解释可变增益放大器电路1的偏移校正过程。首先,增益切换单元12将放大单元11的增益设置到最小增益 >>(>A>≅>0>)> >(步骤S101)。此时,可以从基于上述表达式(1)的表达式(4)得到DC偏移VOS

VOS(0)=VOS_fix  ......(4)

也就是说,与增益无关的固定分量VOS_fix作为DC偏移出现。因此,对输出偏移校正电压VOC_out进行调节以防止DC偏移,理想情况下在最小增益 >>(>A>≅>0>)> >时可以将DC偏移减小到零,从而抵消了DC偏移的固定分量VOS_fix。更具体地说,基于表达式(5),可以从表达式(6)得到调节电压VOC_out

VOS(0)=VOS_fix-VOC_out=0  ......(5)

VOC_out=VOS_fix  ......(6)

在步骤S103中,增益切换单元12将放大单元11的增益设置到最大增益。由于DC偏移的固定分量可以通过在步骤S102中调节电压VOC_out来抵消,所以在这种情况下,可以从下面的表达式(7)来得到DC偏移。

VOS(Amax)=VOS_in*Amax  ......(7)

其中Amax表示最大增益。

在步骤S104中,对输入偏移校正电压VOC_in进行调节以防止DC偏移VOS(Amax),理想情况下可以根据表达式(7)将DC偏移减小到零。更具体地说,基于表达式(8),可以从表达式(9)得到调节电压VOC_in

VOS(Amax)=(VOS_in-VOC_in)×Amax=0  ......(8)

VOC_in=VOS_in  ......(9)

这样,在本发明的可变增益放大器电路1中,分两个阶段执行校正:输出偏移校正,用于抵消DC偏移VOS_fix的固定分量;以及输入偏移校正,用于抵消依赖于放大单元11的增益的分量VOS_in,通过上述校正可以校正DC偏移VOS

前面所述的现有可变增益放大器电路8通过输入偏移校正正确地抵消了包括输入偏移分量和固定偏移分量的DC偏移。这引起了一个问题,即应该在每次改变增益时执行偏移校正。

相比之下,本发明的可变增益放大器电路1和DC偏移校正方法的特征在于,分两个阶段执行校正:输出偏移校正,用于抵消与增益无关的固定偏移分量;以及输入偏移校正,用于抵消随增益变化的输入偏移分量。其优点是,从表达式(6)得到的输出偏移校正电压VOC_out和从表达式(9)得到的输入偏移校正电压VOC_in二者都不依赖于放大单元11的增益A。

因此,即使当放大单元11的增益A改变时,本发明的可变增益放大器电路1也可以在不重新调节分量VOC_out和VOC_in的情况下抑制DC偏移。因此,与每次增益改变时需要执行偏移校正的现有可变增益放大器电路8相比,本发明的可变增益放大器电路1能够以更高的速度来切换增益。上述偏移校正可以在不执行信号放大操作的周期期间来执行,例如,在可变增益放大器电路1处于接通电源时或在备用期间。

顺便说一下,在步骤S103和S104中,当将放大单元11的增益设置为最大增益时执行校正,但是增益可以不是最大增益。不过,如果用放大单元11的较大增益来执行偏移校正,则具有如下优点,即DC偏移VOS由于输入偏移校正电压VOC_in的改变而大幅改变,这有利于调节分量VOC_in,并且可以减小在偏移校正之后的输出电压中的残余DC偏移量。因此,当将放大单元11的增益设置在最大增益时,能够理想地执行步骤S104中的输入偏移校正。

图3示出了该实施例的可变增益放大器电路1的结构的具体例子。放大单元11包括NMOS晶体管M1和M2的差分对。增益切换单元12将ON/OFF控制信号发送给放大单元11的开关SW1至SW3。在图3所示的例子中,两级增益,即增益A1和增益A2能够通过开关SW2和SW3相互进行切换。顺便说一下,开关SW1用于获得在图2的步骤S103和步骤S104中设置的最大增益。更具体地说,当在步骤S101中设置最小增益时,SW1=OFF,SW2=OFF,并且SW3=OFF。当在步骤S103中设置最大增益时,SW1=ON,SW2=OFF,并且SW3=OFF。此外,当设置增益A1=R1/(R3+1/gm)时,SW1=OFF,SW2=ON,并且SW3=OFF。当设置增益A2=R1/(R5+1/gm)时,SW1=OFF,SW2=OFF,并且SW3=ON。这里,R1=R2,R3=R4,并且R5=R6,并且gm表示晶体管M1和M2的互导。

输出偏移校正单元14包括:校正控制单元141,用于控制上述输出偏移校正;以及D/A转换器(DAC)142。DAC 142的输出信号被输入到晶体管M3的栅极。晶体管M3与作为差分对的晶体管M1的源极相连。通过调节DAC 142的输出信号,可以对流经晶体管M1的漏极和源极之间的漏极电流IDS进行调节,以调节输出端out_b的输出电压。也就是说,晶体管M3起到可变电流源的作用。上述输出偏移校正是通过调节DAC 142的输出信号来执行的。如果在差分对的输出端out_a和out_b之间存在的电位差为预定的值或更小,则DAC 142的输出信号被保持并施加到晶体管M3的栅极。

此外,输入校正单元13包括:校正控制单元131,用于在使用输出偏移校正单元14进行输出偏移校正之后,来校正输入偏移;以及D/A转换器(DAC)132。DAC 132的输出信号被输入到作为差分对的晶体管M1的栅极。上述输入偏移校正是通过改变DAC 132的输出信号来执行的,并且如果DC偏移变成预定值或更小,则DAC 132的输出信号被保持并施加到晶体管M1的栅极。

图4示出了可变增益放大器电路1的另一个结构例子。在如图4所示的结构中,与图3的晶体管M3和M4并联地插入了晶体管M5和M6。这里,晶体管M5和M6的栅宽度被设置得小于晶体管M3和M4的栅宽度,并且对晶体管M5的栅极和晶体管M6的栅极中的一个或两个施加电压。例如,假定晶体管M3与晶体管M5的栅宽度比为n∶1,则可以根据晶体管M5的栅极电压来调节漏极电流,电压调节范围是通过晶体管M3进行的电压调节范围的n倍。如果n=5,则可以以±50mV的电压调节范围来校正漏极电流;在晶体管M3的情况下,该范围是±10mV。也就是说,可以使漏极电流的变化相对于栅极电压的变化最小,因此能够更为精细地控制晶体管M1的漏极电流,并且能够将DC偏移的校正误差最小化。

顺便说一下,在图4中,晶体管M5的漏极端可以连接到电阻器R1的输出端节点,换句话说,就是电阻器R1和晶体管M1的公共节点。另外在这种结构中,可以通过调节DAC 142的输出信号来调节输出端out_b的输出电压。

在上述实施例中,当将放大单元11的增益设置为最小增益 >>(>A>≅>0>)> >时执行用于减小固定偏移分量VOS_fix的校正,之后将放大单元11的增益切换为另一个增益,理想情况下切换到最大增益,并且执行用于减小输入偏移分量VOS_in的校正。不过,代替将放大单元11的增益设置为最小增益 >>>(>A>≅>0>)>>,> >可以计算出对应于两个给定增益级别即增益A1和增益A2的输出偏移VOS(A1)和VOS(A2),以便从下面的表达式(10)和(11)来得到分量VOS_fix和VOS_in

VOS(A1)=VOS_in*A1+VOS_fix......(10)

VOS(A2)=VOS_in*A2+VOS_fix......(11)

第二实施例

图5示出了根据本发明的第二实施例的可变增益放大器电路2的结构。可变增益放大器电路2如图2的流程所示自动进行偏移校正。在可变增益放大器电路2中,比较器211确定放大单元21的输出端out_a和out_b之间的电位差。比较器211的输出被输入到偏移校正单元23的校正控制单元231。

偏移校正单元23包括校正控制单元231以及DAC 132和142。校正控制单元231根据由比较器211进行的输出电压电平的比较结果来调节DAC 132和142的输出信号,从而执行上述输出偏移校正和输入偏移校正。顺便说一下,其他元件与上述可变增益放大器电路1的那些元件相同,因此使用同样的标号来表示,并且在此省略对它们的讲述。

下面参考图6的校正控制单元231的详细结构,来讲述可变增益放大器电路2的偏移校正过程。校正控制单元231中的U/D计数器234是这样的计数器,其根据比较器211的输出在时钟信号的上升沿或下降沿进行递增/递减。锁存/通过(latch/through)电路235和236可以根据锁存/通过控制信号在对输入信号进行原样输出的通过模式和对输入信号进行的锁存模式之间进行切换。

当进行输出偏移校正时,开关SW1至SW3断开,以便将放大单元21的增益设置为最小增益,并且将锁存/通过电路236的模式设置为通过模式。如比较器211的输出指示,如果DC偏移为负值,则U/D计数器234递增;否则,计数器递减。U/D计数器234的计数值传递到锁存/通过电路236并且被输入到DAC 142。根据U/D计数器234的计数值,如果DC偏移为负值,则DAC 142控制其输出朝向正值,并且如果DC偏移为正值,则DAC 142控制其输出朝向负值。重复上述操作,直到DC偏移收敛到预定值或更小。当DC偏移收敛到预定值或更小时,锁存/通过电路236的模式改变到锁存模式,并且U/D计数器234的计数值作为输出偏移校正值被存储在锁存/通过电路236中。

接下来,在校正输入偏移的情况下,开关SW1接通,以便将放大单元21的增益设置到最大增益,并且将锁存/通过电路235的模式设置到通过模式。此时,锁存/通过电路236保持在锁存模式。与输出偏移校正相似,如果由比较器211的输出表示的DC偏移为负值,则U/D计数器234递增;反之,计数器递减。U/D计数器234的计数值传递到锁存/通过电路235并且被输入到DAC 132。根据U/D计数器234的计数值,如果DC偏移为负值,则DAC 132控制其输出朝向正值,并且如果DC偏移为正值,则DAC 132控制其输出朝向负值。重复上述操作,直到DC偏移收敛到预定值或更小。当DC偏移收敛到预定值或更小时,锁存/通过电路235的模式改变到锁存模式,并且U/D计数器234的计数值作为输入偏移校正值被存储在锁存/通过电路235中。

图7示出了DC偏移是如何通过以上偏移校正而收敛的。在时刻T1,放大单元21的增益被设置到最小增益,并且锁存/通过电路236的模式被设置为通过模式,以启动输出偏移校正。在图7的解释性例子中,在时刻T1,DC偏移VOS为正值。因此,随着U/D计数器234的递减,偏移VOS减小。在时刻T2,确定偏移VOS通过输出偏移校正而收敛,并且锁存/通过电路236的模式改变为锁存模式。在接下来的时刻,即时刻T3,放大单元21的增益被设置到最大增益,并且锁存/通过电路235的模式被设置为通过模式,以启动输入偏移校正。在时刻T4,确定偏移VOS收敛,并且锁存/通过电路235的模式改变为锁存模式。

通过上述过程,执行了DC偏移校正,并且使用存储在锁存/通过电路235和236中的值来输出DAC 132和142的信号。因此,当改变放大单元21时,不需要进行DC偏移的重新校正。

第三实施例

根据本发明的第三实施例的可变增益放大器电路3是第二实施例的可变增益放大器电路2的一种高级形式,并且能够进行更高精确度的DC偏移校正。图8示出了可变增益放大器电路3的结构。可变增益放大器电路3包括精细调节DAC 332,其连接到放大单元31的输入线,但不是与DAC 132相连接的输入线。可变增益放大器电路3进一步包括精细调节DAC 333,其连接到晶体管M4的栅极。

图9示出了当对可变增益放大器电路3的偏移进行校正时,DC偏移VOS是如何收敛的。首先,与可变增益放大器电路2类似,DAC 142对输出偏移进行校正,以便使DC偏移VOS大致收敛。之后,精细调节DAC 333进一步将偏移分量VOS收敛到零。同样,对于输入偏移校正,DAC 132使偏移分量VOS大致收敛,并且然后DAC 332执行精细调节。

这种精细调节可以通过增加第二实施例的可变增益放大器电路2中的DAC 132和142的位数来执行。不过,增加DAC的位数会导致电路规模增大的问题,以及花费许多时间来收敛偏移分量VOS的问题。与之相比,通过独立地提供可粗调的DAC和精细调节DAC,可以使每个DAC的电路的尺寸减小。此外,可粗调的DAC在短时间内收敛偏移分量VOS,并且然后精细调节DAC执行精细调节,从而可以在较短的时间内收敛偏移分量VOS。例如,可以使用6位DAC和2位DAC来取代8位DAC进行偏移校正。

此外,可变增益放大器电路3包括与电阻器R7和R8并联的开关SW6和SW7。可变增益放大器电路3通过切换DAC 132和332的输出信号来校正输入偏移分量VOS_in。不过,如果“R7*C1”和“R8*C2”较大,则在调节DAC 132和332之后要花费较长的时间来平息和稳定这种瞬间现象。因此,在校正输入偏移时,开关SW6和SW7接通,以便使信号绕过电阻器R7和R8,并且加速瞬间现象的稳定,从而缩短校正输入偏移所需要的时间。

第四实施例

本发明的第四实施例是多级放大型可变增益放大器电路。图10示出了该实施例的可变增益放大器电路4的结构。多级放大单元41包括n个可变增益放大单元41-1至41-n。增益切换单元42切换放大单元41-1至41-n的增益,并且输出偏移校正单元14-1至14-n校正放大单元41-1至41-n的偏移。输入偏移校正单元13校正第一放大单元41-1的输入偏移。这里,除了第一个之外的所有输入偏移校正单元13都是不必要的,其原因是第k(k是除1之外的任意数)个单元的输入偏移校正可以与第(k-1)个单元的输出偏移校正一起执行。

多级放大单元41的第n个放大单元41-n的DC偏移包括了第一至第(n-1)个放大单元的DC偏移。放大单元41-n的DC偏移VOS(n)是从表达式(11)得到的。

VOS(n)=(VOS_in(1)-VOC_in(1))*A(1)A(2)..A(n)

+(VOS_in(2)+VOS_fix(1)-VOC_out(1))*A(2)A(3)..A(n)

+......

+(VOS_in(n-1)+VOS_fix(n-2)-VOC_out(n-2))*A(n-1)A(n)

+(VOS_in(n)+VOS_fix(n-1)-VOC_out(n-1))*A(n)

+VOS_fix(n)-VOC_out(n)                   ......(11)

这里,VOS_in(k)表示与第k个放大单元41-k的增益A(k)成正比的输入偏移分量,并且VOS_fix(k)表示第k个放大单元41-k的固定偏移分量。

可以根据如下过程来执行可变增益放大器电路4的DC偏移校正。首先,增益开关单元12-n将作为最后一级的第n个单元的增益A(n)设置为最小增益 >>>(>>A>>(>n>)> >≅>0>)>>.> >在这种情况下,偏移分量VOS(n)表示如下。

VOS(n)=VOS_fix(n)-VOC_out(n)  ......(12)

这里,对输出偏移校正单元14-n进行调节,以便将从表达式(12)得到的偏移分量VOS(n)减小到零,从而可以抵消第n个单元的固定偏移分量VOS_fix(n)。此时,第n个单元的输出偏移校正电压VOC_out(n)表示如下。

VOC_out(n)=VOS_fix(n)    ......(13)

接下来,第n个单元的增益A(n)被设置为最大增益,并且第(n-1)个单元的增益A(n-1)被设置为最小增益 >>>(>>A>>(>n>->1>)> >≅>0>)>>.> >在这种情况下,由于第n个单元的固定偏移分量VOS_fix(n)已经被抵消,因此可以从下面的表达式(14)得到偏移分量VOS(n)

VOS(n)=(VOS_fix(n-1)+VOS_in(n)-VOC_out(n-1))*A(n)  ......(14)

因此,对输出偏移校正单元14-(n-1)进行调节,以便将从表达式(14)得到的偏移分量VOS(n)减小到零,从而可以正确地抵消第(n-1)个单元的固定偏移分量VOS_fix(n-1)和第n个单元的输入偏移分量VOS_in(n)。在这种情况下,第(n-1)个单元的输出偏移校正电压VOC_out(n-1)表示如下。

VOC_out(n-1)=VOS_fix(n-1)+VOS_in(n)  ......(15)

重复上述过程,直到第一个放大单元41-1为止,从而可以减小每个放大单元的固定偏移分量和输入偏移分量。最后,第一个放大单元41-1的增益被设置为最大增益,并且输入偏移校正单元13抵消了第一个放大单元41-1的输入偏移分量VOS_in(1),以便将从表达式(16)得到的偏移分量VOS(n)减小到零,从而校正多级放大单元41的输出电压中包含的DC偏移。

VOS(n)=(VOS_in(1)-VOC_in(1))*A(1)A(2)..A(n)  ......(16)

在这种情况下,如下计算第一个单元的输入偏移校正电压VOC_in(1)

VOC_in(1)=VOS_in(1)    ......(17)

通过执行这种校正过程,可以实施可变增益放大器电路4的DC偏移校正,其中可变增益放大器电路4包括具有串联连接的多个放大单元的多级放大单元41。此外,从表达式(13)、(15)和(17)明显看出,各放大单元41-1至41-n的输出偏移校正电压和输入偏移校正电压都不依赖于放大单元41-1至41-n的增益。因此,即使改变了多级放大单元41的增益,也不需要DC偏移的重新校正,并且能够高速地切换多级放大单元41的增益。

图11示出了可变增益放大器电路4的具体结构例子。在图11的解释性例子中,多级放大单元41是包括放大单元41-1至41-3的三级放大单元。偏移校正单元43对应于输入偏移校正单元13和输出偏移校正单元14-1至14-3。类似于第二实施例的校正控制单元231或第三实施例的校正控制单元331,校正控制单元431接收来自比较器211的比较结果,以调节DAC 132和142、332、333、432和433的输出信号。这里,DAC 332和333是如第三实施例中所述的精细调节DAC。

第五实施例

图12示出了根据本发明的第五实施例的可变增益放大器电路5的结构。可变增益放大器电路5是如图3所示的第一实施例的结构的修正例子,其中在图3中,DAC 142的输出信号用于控制晶体管M3的栅极电压。在可变增益放大器电路5中,电阻器控制单元542控制可变电阻器VR1的电阻值,从而调节晶体管M3的栅极电压、晶体管M1的漏极电流、以及输出端out_a和out_b之间的电位差。

此外,可以用能够根据来自输出偏移校正单元54的控制信号来改变电流值的电流源来代替可变电阻器VR1。简而言之,本发明的输出偏移校正的目的是通过调节晶体管M1和M2的差分对的输出端来减小输出端之间的电位差Vout_a-Vout_b。因此,用于调节输出端之间电位差的具体措施和结构并不限于上述实施例,并且可以对其进行各种改进。

第六实施例

在如图5所示的第二实施例的结构、如图8所示的第三实施例的结构、以及如图11所示的第四实施例的结构中,比较器211可以起到校正输入偏移的作用,并且可以根据比较器211的输入电压来校正偏移,从而使比较器211的检测误差最小化。因此,校正控制单元231、331和431可以精确地确定DC偏移是否是收敛的。

其他实施例

图13示出了包括本发明的两个增益放大器电路41的直接转换型无线电接收设备6。在下面的讲述中,两个可变增益放大器电路41是指可变增益放大器电路41a和41b。使用低噪声放大器62对经由天线61接收到的RF信号进行放大。放大的RF信号被分成两支,并且在混频器63a和63b处与从本地振荡器65输出的载波相混合,该载波与RF信号具有相同的频率。本地振荡器65通过90度移相器64与混频器63a和63b相连,并且RF信号被转换成相互垂直的基带信号。基带信号在通过低通滤波器66a和66b之后,通过可变增益放大器电路41a和41b被放大到预定信号电平。放大的基带信号通过A/D转换器67a和67b被转换成数字信号,并且被输入到数字信号处理单元68。这里,低通滤波器66a和66b除了可以插入到可变增益放大器电路41a和41b的前面以外,还可以插入到可变增益放大器电路41a和41b之后,或者在多级可变增益放大器电路41a和41b中的各电路之间。

可变增益放大器电路41a和41b的增益应该根据无线电接收设备6的输入电平而改变。如上所述,可变增益放大器电路41a和41b在改变增益时,不需要再次执行DC偏移校正。因此,可以高速地改变增益并且防止由于在改变增益中的延迟而导致的接收数据的损失。

很明显,本发明并不限于上述实施例,可以在不偏离本发明的范围和精神的情况下对其进行修改和变化。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号