首页> 中国专利> 用于制造多层高温超导(HTS)涂布带的金属有机化学气相沉积(MOCVD)法以及设备

用于制造多层高温超导(HTS)涂布带的金属有机化学气相沉积(MOCVD)法以及设备

摘要

一种有机化学气相沉积设备以及制造电流容量高的多层高温超导涂布带的方法,所述设备包括多个液体前体源,各自具有相连的泵和汽化器,所述汽化器的出口连通到金属有机化学气相沉积反应器中的多隔室喷头设备。所述多隔室喷头设备靠近有关的基质加热器,它们一起形成位于沉积区中的多沉积段区。

著录项

  • 公开/公告号CN1829571A

    专利类型发明专利

  • 公开/公告日2006-09-06

    原文格式PDF

  • 申请/专利权人 美国超能公司;

    申请/专利号CN200480017515.7

  • 发明设计人 V·塞尔瓦曼尼克姆;李喜均;

    申请日2004-05-25

  • 分类号B05B13/02(20060101);B32B9/00(20060101);

  • 代理机构31100 上海专利商标事务所有限公司;

  • 代理人陈文青

  • 地址 美国纽约州

  • 入库时间 2023-12-17 17:38:18

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-07-17

    未缴年费专利权终止 IPC(主分类):B05B13/02 授权公告日:20100908 终止日期:20120525 申请日:20040525

    专利权的终止

  • 2010-09-08

    授权

    授权

  • 2006-10-25

    实质审查的生效

    实质审查的生效

  • 2006-09-06

    公开

    公开

说明书

发明领域

本发明涉及电流容量高的高温超导(HTS)涂布电线的高产出金属有机化学气相沉积(MOCVD)。

发明背景

在过去的三十年中,美国的终端能量消耗中电能已从25%上升到了40%。随着对能源需求的增加,越来越急需高度可靠、高质量的能源。随着对能源的需求不断增长,城市电力系统被推到了其性能的极限,较陈旧的部分更是如此,需要有新的解决方案。

导线形成了世界电力系统的基本结构单元,包括变压器、传输和配电系统,以及电动机。由于1986年革命性的HTS化合物的发现,开发出了完全新型的电力工业用的导线;这个发现是导线技术在一个多世纪里最重要的进步。

HTS导线具有最佳的性能,它所输送的电流比相同物理尺寸的常规铜导体或铝导体高100倍。HTS导线的出众功率密度可以形成新一代的电力工业技术。它主要在尺寸、重量和功率方面提供了益处。HTS技术可以各种方式降低电力系统的成本,提高其能力和可靠性。

例如,HTS导线的输送能力超过现有路线的两倍至五倍。这种新的电缆将提供一种强大的工具,在改进输电网的同时减少它们对环境的影响(footprint)。然而迄今为止,仅制得了高性能的用来制造下一代HTS导线的HTS带的短样品。为使HTS能够实际应用于电力生产和配电工业,需要开发出用于连续、高生产量地生产HTS带的技术。

金属有机气相沉积法(MOCVD)是一种提供高效制造HTS带所需成本低、产出高的沉积方法。在MOCVD中,通过在基材表面上发生的化学反应,由汽相前体将钇-钡-铜-氧(YBa2Cu3O7或“YBCO”)之类的HTS膜沉积到加热的缓冲(buffered)金属基材上。

一种表征涂布的导体的指标是其每米的成本。另外,可以根据每千安培米的成本来评价成本和性能。更具体地说,对于给定的每米涂布导体的成本,随着电流的增大,每千安培米的成本降低。这被表述为沉积的HTS材料的临界电流(Jc)与膜的横截面积的乘积。

对于给定的临界电流和被涂导体的宽度,一种提高横截面积的方法是增加HTS膜的厚度。然而,已经证明,在传统工艺参数下,尽管临界电流是厚度的函数,但随着HTS膜单层厚度的增加超过大约1.5微米,临界电流会下降,并达到饱和。这是由于在膜厚超过大约1.5微米的情况下,HTS材料孔非常多,产生空隙,使得表面糙度增大,所有这些变化都会抑制电流的流动。这通常导致将涂布导体中临界电流限制在100A/cm宽度。

由于简单地增加HTS膜的厚度无法相应地增大临界电流,如何以低成本高效益的方法在使膜厚度超过1.5微米的同时,还要使HTS涂布的导体的临界电流实现相应的增加,在技术上是一个挑战。

在MOCVD沉积方法中,对HTS膜的形态有利的因素包括室压力、基材温度、氧气含量以及将氧气引入沉积区的方法、加入沉积区中的前体量(由通过喷头组件的前体蒸汽及其惰性载气中的前体摩尔浓度以及质量流速来确定)、在引入沉积区前前体所处的温度、以及将反应副产物从沉积区排出的效率。

虽然已知对一些上述参数的优化方法(如前体蒸汽及其惰性载气在230-270℃的温度范围内引入沉积区最高效),但是对其它参数的优化方法并不为人所知,需要进行技术创新。

Hubert等在美国专利第5820678号,题为“Solid Source MOCVD System”中描述了一种MOCVD制造超导和非超导氧化物膜的系统,其中包括一种用于多组分气相化学沉积法中用于金属有机前体进料的传送系统。所述传送系统包括含有包装牢固的前体材料的多个供料管(cartridge)。各供料管的内含物可按所需速度碾磨,然后和来自其它供料管的金属有机前体一起送入蒸发区,再进入沉积室内的反应区用于薄膜沉积。但是,由Hubert等介绍的MOCVD系统的缺点是虽然它适于沉积超导氧化物膜,但是它不能提供用于提高厚HTS膜的临界电流的方法。

Tatekawa等人在名为“制造超导厚膜的方法(Method for producingsuperconducting thick film)”的美国专利No.6143697号中,描述了制造超导厚膜的方法,该方法包括以下步骤:形成厚层,该厚层包括基材上的超导材料;对形成在基材上的厚层进行烧制;对烧制过的厚层进行冷等静压压制;然后对进行了冷等静压压制的厚层再次进行烧制。Tatekawa等人的方法的一个缺点是,尽管这是一种宜用于制造超导氧化物厚膜的方法,但是该方法无法以较低成本、高效地制造高电流HTS涂布导体,也不能提供足够的受控工艺参数,以便得到具有提高的临界电流的厚HTS膜。因此,Tatekawa等人的方法不适于低成本高效地制造高电流HTS涂布导体。

因此,本发明的一个目的是用厚度超过1.5微米的HTS膜所形成的涂层制造高电流HTS涂布导体,其电流容量提高,超过100A/cm宽度。

本发明另一目的是提供通过用于制造多层HTS涂布带的MOCVD方法形成高电流HTS涂布导体的低成本高效方法。

本发明的目的是制造电流容量高的厚度超过1.5微米的YBCO膜,用于制造高电流HTS涂布带。

本发明的目的是提供一种形成高电流HTS涂布导体的低成本高效的方法,所述方法使用MOCVD方法,同时精确控制用于沉积YBCO厚膜的工艺参数。

本发明的目的是提供一种形成高电流多层HTS涂布导体的低成本高效的方法,其中,所述多层具有相同的组成。

本发明的目的是提供一种形成高电流多层HTS涂布导体的低成本高效的方法,其中,所述多层具有不同的组成。

发明概述

本发明是用于制造电流容量高的多层HTS涂布带的MOCVD系统。本发明所述MOCVD系统包括多个液体前体源,各自具有关联的泵和汽化器,所述汽化器的出口连通到金属有机化学气相沉积反应器中的多隔室喷头设备。所述多隔室喷头设备靠近转移的金属基材带和有关的基质加热器。

在所述多隔室喷头设备中加入多种汽化的前体源,在此,这种源包括一种或多种HTS材料,如钇(Y)、钡(Ba)和铜(Cu)的化合物组合,以及合适溶剂的混合物,或者钐(Sm)或其它稀土元素、Ba和Cu的化合物,与合适的溶剂混合物的组合。通过这种方式,多层HTS材料可以在转移的基材带上相继形成,每层与多隔室喷头设备的一个隔室相连。由此得到多层膜沉积方法,其中,各层的厚度不会超过1.5微米,所得结构一起形成其电流容量比单厚层HTS膜的导体高的HTS涂布导体。

附图简要说明

图1说明了本发明第一实施方式中用于制造电流容量高的多层HTS涂布带的MOCVD系统。

图2说明了本发明第二实施方式中用于制造电流容量高的多层HTS涂布带的MOCVD系统。

图3说明了本发明前体传送系统的组件。

图4a说明了通过本发明MOCVD系统的第一实施方式形成的多层涂布带例子的截面图。

图4b说明了通过本发明MOCVD系统的第二实施方式形成的多层涂布带例子的截面图。

发明详述

本发明是一种使用一组受控的工艺参数的MOCVD系统,所述系统用于制造电流容量高的厚度超过1.5微米的稀土氧化物膜,如YBCO膜。这种参数包括但不限于氧气分压、前体组成、前体传送速度以及沉积温度。

所述MOCVD系统包括延长的沉积区,它还分成沿其全长相继排列的子沉积区,其中,转移的基材进行汽相沉积工艺。当基材带沿沉积区直线平移时,各子沉积区中的条件是动态的,并且是单独控制的;所述HTS膜越来越厚,由此提供一种优化膜形态的方法,并使诸如孔隙。空隙以及表面粗糙度高的缺点尽可能减少。通过本发明MOCVD系统使HTS膜变厚可以提供厚度超过1.5微米的高质量HTS膜,其材料密度和光滑度提高,使电流容量增大,至少超过100A/cm宽度。

图1说明了本发明第一实施方式中的MOCVD系统100。本发明MOCVD系统100的特征在于精确控制工艺参数,以制造厚度超过1.5微米、电流容量提高的YBCO膜。MOCVD系统100还包括前体传送系统120的多个实例,例如,前体传送系统120a、前体传送系统120b、前体传送系统120c、前体传送系统120d和前体传送系统120e。所述前体蒸汽通过相关的前体蒸汽管线122离开各前体传送系统120的实例,进入反应器110中的多隔室喷头112。更具体的是,所述前体传送系统120a通过前体蒸汽管线122a向多隔室喷头112的隔室113a进料,所述前体传送系统120b通过前体蒸汽管线122b向多隔室喷头112的隔室113b进料,所述前体传送系统120c通过前体蒸汽管线122c向多隔室喷头112的隔室113c进料,所述前体传送系统120d通过前体蒸汽管线122d向多隔室喷头112的隔室113d进料,所述前体传送系统120e通过前体蒸汽管线122e向多隔室喷头112的隔室113e进料。而且,前体传送系统120的各实例通过普通气体管线104进料。较好是将普通气体管线分成5个单独的气体管线,连接到蒸发器120a、120b、120c、120d和120e,以精确控制向各前体传送系统的流速。前体传送系统120的细节如图3所示。

最后,MOCVD系统100包括连接到反应器110上的真空泵142。真空泵142是市售的真空泵,能将真空压保持在10-3乇数量级,如Leybold D408型。或者所述真空压通过组合机械泵和机械推进器如Edwards EH500型来保持,用大量液体前体将真空压保持在合适水平上。

在沉积区118中形成不同的区域,并且和多隔室喷头112中各隔室113相关。在图1所示实施例中,从隔室113a分配来的蒸汽在在沉积区118的区A中沉积到基材带116上,从隔室113b分配来的蒸汽在区B中沉积到基材带116上,从隔室113c分配来的蒸汽在区C中沉积到基材带116上,从隔室113d分配来的蒸汽在区D中沉积到基材带116上,以及从隔室113e分配来的蒸汽区E中沉积到基材带116上。

所述多区域基材加热器114是熟知的多区域基材加热器,通过辐射加热元件如红外灯将基材带116加热至通常700-950℃。或者,所述多区域基材加热器114是具有加热元件的电阻加热器,如Kanthal或MoSi2加热器。多区域基材加热器114包括多个单独控制的加热区域(即,通过多个单独控制的加热元件,图中未显示出来),它们与沉积区118中的区A、B、C、D和E关联。更具体的是,加热区A在沉积区118的区A中与基材带116对齐,加热区B在沉积区118的区B中与基材带116对齐,加热区C在沉积区118的区C中与基材带116对齐,加热区D在沉积区118的区D中与基材带116对齐,加热区E在沉积区118的区E中与基材带116对齐。

而且,假设基材带116从区A向区E移动,多区域基材加热器114可以包括在沉积区118的区A之前与基材带116对齐的预加热区。最后,多区域基材加热区114可以包括在沉积区118的区E之后与基材带116对齐的冷却区(cool-down)。在基材带116准备进入沉积区118时,所述预热区将基材带116的温度升高。相反,在基材带116离开沉积区118之后并准备离开反应器110时,所述冷却区将基材带116的温度降低。

图3显示了各前体传送系统120实例中所包括的元件。更具体的是,各前体传送系统120实例包括液体源206,它是由例如不锈钢形成的储槽,它包含具有有机金属前体(如钇(Y)、钡(Ba)和铜(Cu)的四甲基庚二酮(THD)化合物)以及合适溶剂混合物(如四氢呋喃和异丙醇)的溶液。液体源206进入泵202中,它是速度在0.1-10ml/min之间的低流速液体前体传送泵。泵202是高压低流速泵,如高压液相色谱(HPLC)泵。泵202向前体汽化器204进料,在所述汽化器中,前体溶液在例如约240℃下闪蒸,并与惰性载气如氩气或氮气混合,传送到多隔室喷头112中。所述惰性载气通过由管道或管道系统形成的气体管线104送入前体汽化器204中。所述前体蒸汽通过前体蒸汽管线122离开前体汽化器204,所述管线是连通管道或管道系统,所述前体蒸汽和惰性载气借此进入多隔室喷头112中。

在前体蒸汽管线122进入反应器110之前,氧气管线128朝前体蒸汽管线122打开,所述氧气管线128是供氧气通过的管道或管道系统,将氧气引入在前体蒸汽管线122中流动的前体蒸汽及其惰性载气中。

泵202以及前体蒸汽管线122的大小应合适,以将前体传送到多隔室喷头112的隔室113中,并且之后以合适的转移速度转移到沉积区118。所述前体的压力和流速通过泵202的规格以及前体蒸汽管线122的直径组合进行控制。类似地,氧气管线128的大小合适,以合适的传送速度和压力将氧气传送到前体蒸汽管线122中。氧气管线预热至约240℃,通过将冷的氧气引入前体传送管线中来防止局部出现冷点(cold spot)。

为了讨论本发明的MOCVD系统100,可以说前体传送系统120a包括液体源206a、泵202a、前体汽化器204a以及向前体蒸汽管线122a送料的氧气管线128a;前体传送系统120b包括液体源206b、泵202b、前体汽化器204b以及向前体蒸汽管线122b送料的氧气管线128b;前体传送系统120c包括液体源206c、泵202c、前体汽化器204c以及向前体蒸汽管线122c送料的氧气管线128c;前体传送系统120d包括液体源206d、泵202d、前体汽化器204d以及向前体蒸汽管线122d送料的氧气管线128d;前体传送系统120e包括液体源206e、泵202e、前体汽化器204e以及向前体蒸汽管线122e送料的氧气管线128e。而且,前体汽化器204a、204b、204c、205d和205e均通过普通管线104进料。较好将普通气体管线104分成5个单独的气体管线,分别连接到汽化器120a、120b、120c、120d和120d,以精确控制气体进入各前体传送系统的流速。

参见图1和3,前体传送系统120a、前体传送系统120b、前体传送系统120c、前体传送系统120d和前体传送系统120e、气体管线104和真空泵142均位于反应器110的外部。此外,本领域那些技术人员应意识到所述MOCVD系统100还包括各种传感和控制器件,如压力计和热电偶,为简化起见在图1和3中未显示。

应注意本发明MOCVD系统100的沉积区118不限于图1和2所示的区A到区E。通过扩大多隔室喷头112来包括任意数量的隔室113以及通过扩散单个或多个区域基材加热器114来包括相应数量的单独控制的加热区[多区域加热区],可以扩大沉积区118,以包括任意数量的区域。而且对于多隔室喷头112中的各隔室113来说,MOCVD系统100可以扩大,以包括一个前体传送系统120实例。但是为了进行说明,公开了MOCVD系统100的沉积区118中的5个区(A到E)的例子以及相关的硬件和控制参数。或者,单个前体传送系统可以向喷头中一个以上的隔室送料。

本领域那些技术人员应意识到所沉积的HTS膜的形态可以随若干变量而变化,所述变量例如(但不限于):

沉积温度:HTS膜的表面粗糙度受沉积温度的影响;

前体组成:例如,前体的摩尔浓度(浓度)影响所述膜的形态,例如,缺少钡的膜的形态不同于富含钡的膜以及化学计量的膜;

前体传送速度:例如,当转移通过沉积区118时,沉积的第一层连续暴露在高温下,这会导致第一层的形态在转移通过沉积区118的时间内损坏。提高后续层所用前体传送速度将缩短第一层经受高温的时间,由此使潜在的损坏最小。

氧气分压:必须在不同氧气分压和基材温度下制备所述膜。例如,当前体传送速度增至两倍于0.25-0.5ml/min时,在使用0.5乇的更高氧气分压下可以获得良好的性能。在以上实施例中,当基材的温度升高时,氧气分压应增大。氧气分压可以凭经验根据工艺参数的变化来确定,所述参数如多隔室喷头112和基材带116之间的距离、蒸汽暴露在紫外线中的程度、或者使用原子氧或臭氧作为氧化剂。

以下提供对一些影响HTS膜形态的变量的具体分析。

已经证实在假设传送速度为0.25ml/min以及沉积温度为800℃时,前体摩尔浓度(即,每升溶液中溶质的摩尔数)的增大会导致膜厚度增大。例如:

0.030mol/L的摩尔浓度得到的膜厚度约为1.0微米;

0.045mol/L的摩尔浓度得到的膜厚度约为1.25微米;

0.060mol/L的摩尔浓度得到的膜厚度约为1.75微米。

已经证实,在假设前体摩尔浓度为0.030mol/L以及沉积温度为800℃时,前体传送速度的增大也会导致膜厚度增大。例如:

0.25mL/min的传送速度得到的膜厚度约为1.0微米;

0.50mL/min的传送速度得到的膜厚度约为2.0微米;

1.00mL/min的传送速度得到的膜厚度约为4.0微米。

已经证实,当假设沉积温度为800℃时,组合改变前体传送速度、前体摩尔浓度以及氧气分压会影响所得膜的临界电流(Jc)值。例如:

实施例1:传送速度为0.25mL/min,摩尔浓度为0.03mol/L以及氧气分压为0.56乇,得到0.6微米厚薄膜(实施例1)的临界电流约为2.7MA/cm2

实施例2:传送速度为0.50mL/min,摩尔浓度为0.03mol/L以及氧气分压为0.56乇,得到0.6微米厚薄膜(即使沉积时间减至实施例1的一半,膜的厚度也与实施例1一样)的临界电流约为0.0A/cm2

实施例3:传送速度为0.50mL/min,摩尔浓度为0.03mol/L以及氧气分压为1.08乇,得到0.6微米厚薄膜(即使沉积时间减至实施例1的一半,膜的厚度也与实施例1一样)的临界电流约为2.5A/cm2

实施例4:传送速度为0.50mL/min,摩尔浓度为0.06mol/L以及氧气分压为1.08乇,得到0.6微米厚薄膜(即使沉积时间减至实施例3的一半,膜的厚度也一样)的临界电流约为2.2A/cm2

而且,已知所述前体蒸汽及其惰性载气在230-300℃的温度范围内能最有效地传送到沉积区中。

最后,在沉积过程中基材带116的温度会影响最终性质。例如,对于在800℃下制得的厚度为0.35微米的膜来说,所得临界电流(Jc)高,为35A(Jc=1MA/cm2)。但是,对于在810℃下制得的相同厚度的膜而言,所述Jc降至10A。

使用图1所示的例子,在以下表1到5中定义了影响MOCVD系统100的沉积区118中的区A、B、C、D和E中膜沉积工艺的具体参数,包括以上下划线所示的。

  沉积区118中区A的控制参数  可接受实例或可接受的范围  优选实施例或优选范围  在液体源206a中的  液体有机金属前体溶  液  Y、Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-3.5)和  溶剂(如四氢呋喃和异丙醇)  摩尔比为1∶1.9-2.5∶  2.8-3.2的Y∶Ba∶Cu的  THD化合物和溶剂  在液体源206a中前  体溶液的摩尔浓度  0.015-0.070mol/L  0.050-0.070mol/L  在液体源206a中液  体前体溶液的温度  200-300℃  250-270℃  通过泵202a的液体  流速  0.1-10mL/min  0.5-5mL/min  在前体汽化器204a  中的闪蒸温度  200-300℃  250-270℃  通过气体管线104的  惰性气体压力  16-30psi  16-20psi  通过氧气管线128a  的氧气分压  0.4-5乇  0.5-3乇  通过前体蒸汽管线  122a的蒸汽前体温度  200-300℃  250-270℃  多隔室喷头112的隔  室113a的长度  10-30cm  15-20cm  基材带116的温度,  通过多区域基材加热  器114的加热区A  700-950℃  750-820℃  基材带116移动速度  0.25-40cm/min  1-40cm/min  所得HTS膜厚度  1.5-10微米  3-10微米

表1:沉积区118中区A的控制参数

  沉积区118中区B的控制参数  可接受实例或可接受范围  优选实施例或优选范围  在液体源206b中的  液体有机金属前体溶  液  Y、Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-3.5)  和溶剂(如四氢呋喃和异丙  醇)。或者,Sm(或Nd、Eu)、  Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-  3.5)。或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  摩尔比为1∶1.9-2.5∶  2.8-3.2的Y∶Ba∶Cu的  THD化合物和溶剂。或者,  Sm(或Nd、Eu)、Ba和Cu  的THD化合物(Y∶Ba∶Cu=  1∶1.9-2.5∶2.8-3.2)。  或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  在液体源206b中前  体溶液的摩尔浓度  0.015-0.070mol/L  0.050-0.070mol/L  在液体源206b中液  体前体溶液的温度  200-300℃  250-270℃  通过泵202b的液体  流速  0.1-10mL/min  0.5-5mL/min  在前体汽化器204b  中的闪蒸温度  200-300℃  250-270℃  通过气体管线104的  惰性气体压力  16-30psi  16-20psi  通过氧气管线128b  的氧气分压  0.4-5乇  0.5-3乇  通过前体蒸汽管线  122b的蒸汽前体温度  200-300℃  250-270℃  多隔室喷头112的隔  室113b的长度  10-30cm  15-20cm  基材带116的温度,  通过多区域基材加热  器114的加热区B  700-950℃  750-820℃  基材带116移动速度  0.25-40cm/min  1-40cm/min  所得HTS膜厚度  1.5-10微米  3-10微米

表2:沉积区118中区B的控制参数

  沉积区118中区C的控制参数  可接受实例或可接受范围  优选实施例或优选范围  在液体源206c中的  液体有机金属前体溶  液  Y、Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-3.5)  和溶剂(如四氢呋喃和异丙  醇)。或者,Sm(或Nd、Eu)、  Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-  3.5)。或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  摩尔比为1∶1.9-2.5∶  2.8-3.2的Y∶Ba∶Cu的  THD化合物和溶剂。或者,  Sm(或Nd、Eu)、Ba和Cu  的THD化合物(Y∶Ba∶Cu=  1∶1.9-2.5∶2.8-3.2)。  或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  在液体源206c中前  体溶液的摩尔浓度  0.015-0.070mol/L  0.050-0.070mol/L  在液体源206c中液  体前体溶液的温度  200-300℃  250-270℃  通过泵202c的液体  流速  0.1-10mL/min  0.5-5mL/min  在前体汽化器204c  中的闪蒸温度  200-300℃  250-270℃  通过气体管线104的  惰性气体压力  16-30psi  16-20psi  通过氧气管线128c  的氧气分压  0.4-5乇  0.5-3乇  通过前体蒸汽管线  122c的蒸汽前体温度  200-300℃  250-270℃  多隔室喷头112的隔  室113c的长度  10-30cm  15-20cm  基材带116的温度,  通过多区域基材加热  器114的加热区C  700-950℃  750-820℃  基材带116移动速度  0.25-40cm/min  1-40cm/min  所得HTS膜厚度  1.5-10微米  3-10微米

表3:沉积区118中区C的控制参数

  沉积区118中区D的控制参数  可接受实例或可接受范围  优选实施例或优选范围  在液体源206d中的  液体有机金属前体溶  液  Y、Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-3.5)  和溶剂(如四氢呋喃和异丙  醇)。或者,Sm(或Nd、Eu)、  Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-  3.5)。或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  摩尔比为1∶1.9-2.5∶  2.8-3.2的Y∶Ba∶Cu的  THD化合物和溶剂。或者,  Sm(或Nd、Eu)、Ba和Cu  的THD化合物(Y∶Ba∶Cu=  1∶1.9-2.5∶2.8-3.2)。  或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  在液体源206d中前  体溶液的摩尔浓度  0.015-0.070mol/L  0.050-0.070mol/L  在液体源206d中液  体前体溶液的温度  200-300℃  250-270℃  通过泵202d的液体  流速  0.1-10mL/min  0.5-5mL/min  在前体汽化器204d  中的闪蒸温度  200-300℃  250-270℃  通过气体管线104的  惰性气体压力  16-30psi  16-20psi  通过氧气管线128d  的氧气分压  0.4-5乇  0.5-3乇  通过前体蒸汽管线  122d的蒸汽前体温度  200-300℃  250-270℃  多隔室喷头112的隔  室113d的长度  10-30cm  15-20cm  基材带116的温度,  通过多区域基材加热  器114的加热区D  700-950℃  750-820℃  基材带116移动速度  0.25-40cm/min  1-40cm/min  所得HTS膜厚度  1.5-10微米  3-10微米

表4:沉积区118中区D的控制参数

  沉积区118中区E的控制参数  可接受实例或可接受范围  优选实施例或优选范围  在液体源206e中的  液体有机金属前体溶  液  Y、Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-3.5)  和溶剂(如四氢呋喃和异丙  醇)。或者,Sm(或Nd、Eu)、  Ba和Cu的THD化合物(Y∶  Ba∶Cu=1∶1.8-2.6∶2.5-  3.5)。或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  摩尔比为1∶1.9-2.5∶  2.8-3.2的Y∶Ba∶Cu的  THD化合物和溶剂。或者,  Sm(或Nd、Eu)、Ba和Cu  的THD化合物(Y∶Ba∶Cu=  1∶1.9-2.5∶2.8-3.2)。  或者,部分Y被取代成  Sm(或Nd、Eu),至多50%  在液体源206e中前  体溶液的摩尔浓度  0.015-0.070mol/L  0.050-0.070mol/L  在液体源206e中液  体前体溶液的温度  200-300℃  250-270℃  通过泵202e的液体  流速  0.1-10mL/min  0.5-5mL/min  在前体汽化器204e  中的闪蒸温度  200-300℃  250-270℃  通过气体管线104的  惰性气体压力  16-30psi  16-20psi  通过氧气管线128e  的氧气分压  0.4-5乇  0.5-3乇  通过前体蒸汽管线  122e的蒸汽前体温度  200-300℃  250-270℃  多隔室喷头112的隔  室113e的长度  10-30cm  15-20cm  基材带116的温度,  通过多区域基材加热  器114的加热区E  700-950℃  750-820℃  基材带116移动速度  0.25-40cm/min  1-40cm/min  所得HTS膜厚度  1.5-10微米  3-10微米

表5:沉积区118中区E的控制参数

下面利用图4a所示的HTS涂布带说明MOCVD系统100的操作细节。

图4a说明了通过图1所示MOCVD系统100形成的HTS涂布带150的截面图。所述HTS涂布带150包括基材带116,在其上首先沉积第一层160,之后相继是层158、层156、层154,最后是层152。层160、层158、层156、层154和层152各自由HTS膜如YBCO通过图1所示的MOCVD系统100形成。

参看图1、3和4a,本发明MOCVD系统100的操作如下所述。

通过激活真空泵142,在反应器110中形成足够的真空。基材带116通过沉积区118的直线移动以从区A到区E的方向开始。(将基材带116移动的机械并未显示。)激活在多区域基材加热器114中的所有加热元件,按照表1-5使基材带116达到所需温度。

液体源206a、206b、206c、206d和206e包含如表1-5所示的液体有机金属前体溶液。激活泵202a、202b、202c、202d和202e,分别从液体源206a、206b、206c、206d和206e将液体前体送入前体汽化器204a、204b、204c、204d和204e中。在此,所述溶液瞬间被闪蒸,然后与惰性载气如氩气或氮气混合,从气体管线104送入前体汽化器204a、204b、204c、204d和204e中,形成钇-钡-铜蒸汽前体。所述来自前体汽化器204a、204b、204c、204d和204e的钇-钡-铜蒸汽前体通过载气分别由前体蒸汽管线122a、122b、122c、122d和122e携带到反应器110中。所述前体蒸汽管线122a、122b、122c、122d和122e按照表1-5所述通过加热线圈(未显示)保持在合适温度下。此外,在蒸汽前体进入反应器110之前,分别通过氧气管线128a、128b、128c、128d和128e将氧气引入前体蒸汽管线122a、122b、122c、122d和122e中。

在激活MOCVD系统100的反应器110中的沉积工艺以及按照表1-5所述设定控制参数之后,如下所述形成HTS涂布带150。

首先,前体蒸汽管线122a将包含钇-钡-铜的前体蒸汽转送到多隔室喷头112的隔室113a中,在沉积区118的区A中,它均匀地将这种蒸汽前体喷射到基材带116上。氧气与包含钇-钡-铜的前体蒸汽反应以及之后这一反应混合物与沉积区118的区A中的热基材带116接触会导致包含钇-钡-铜的前体蒸汽分解,并当基材带116在沉积区118的区A中移动时,在其顶部形成YBCO层160。通过表1所示的控制参数,可以使层160中的缺陷最少。这样,层160提供了用于形成其它YBCO材料的高质量模板。

之后,前体蒸汽管线122b将表2中所述的包含钇-钡-铜的前体蒸汽或者另一种包含前体的蒸汽传送到多隔室喷头112的隔室113b中,在沉积区118的区B中,它均匀地将这种蒸汽前体喷射到基材带116上。氧气与表2中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽反应以及之后这一反应混合物与沉积区118的区B中的热基材带116接触会导致表2中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽分解,并当基材带116在沉积区118的区B中移动时,在其顶部形成YBCO或与其它前体对应的HTS的层158。通过表2所示的控制参数,可以使层158中的缺陷最少。这样,层158提供了用于形成其它YBCO材料或者所用其它前体对应的HTS层的高质量模板。

之后,前体蒸汽管线122c将表3中所述的包含钇-钡-铜的前体蒸汽或者另一种包含前体的蒸汽传送到多隔室喷头112的隔室113c中,在沉积区118的区C中,它均匀地将这种蒸汽前体喷射到基材带116上。氧气与表3中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽反应以及之后这一反应混合物与沉积区118的区C中的热基材带116接触会导致表3中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽分解,并当基材带116在沉积区118的区C中移动时,在其顶部形成YBCO或与其它前体对应的HTS的层156。通过表3所示的控制参数,可以使层156中的缺陷最少。这样,层156提供了用于形成其它YBCO材料或者与所用其它前体对应的HTS层的高质量模板。

之后,前体蒸汽管线122d将表4中所述的包含钇-钡-铜的前体蒸汽或者另一种包含前体的蒸汽传送到多隔室喷头112的隔室113d中,在沉积区118的区D中,它均匀地将这种蒸汽前体喷射到基材带116上。氧气与表4中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽反应以及之后这一反应混合物与沉积区118的区D中的热基材带116接触会导致表4中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽分解,并当基材带116在沉积区118的区D中移动时,在其顶部形成YBCO或与其它前体对应的HTS的层154。通过表4所示的控制参数,可以使层154中的缺陷最少。这样,层154提供了用于形成其它YBCO材料或者与所用其它前体对应的HTS层的高质量模板。

最后,前体蒸汽管线122e将表5中所述的包含钇-钡-铜的前体蒸汽或者另一种包含前体的蒸汽传送到多隔室喷头112的隔室113e中,在沉积区118的区E中,它均匀地将这种蒸汽前体喷射到基材带116上。氧气与表5中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽反应以及之后这一反应混合物与沉积区118的区E中的热基材带116接触会导致表5中所述的包含钇-钡-铜的前体蒸汽或者其它前体蒸汽分解,并当基材带116在沉积区118的区E中移动时,在其顶部形成YBCO或与其它前体对应的HTS的层152。

通过表5中的控制参数可以使层152中的缺陷最小。这样,层152提供了一种用于形成其它HTS材料或者如银或铜这样的材料的高质量模板,它可以通过任意薄膜沉积方法进行沉积。结果,所述YBCO层或者对应于所用任意其它前体的用于形成HTS涂布带150的HTS层的共同厚度大于2微米,其临界电流密度约大于0.6MA/cm2

简而言之,通过优化沉积控制参数,通过经由沉积区118中多个单独控制的沉积区(即,区A、B、C、D和E)将一层高质量的YBCO涂层或者对应于其它前体的HTS层施加到另一涂层上,可以形成厚的YBCO层或者对应于所用其它前体的HTS层。通过这种方式,各YBCO涂层或对应于所用其它前体的HTS(它们施加到另一个涂层上)的形态可得到仔细控制,使薄膜的缺陷(如孔隙、空隙和表面粗糙度)最小,由此,形成高质量的增长模板。因此,本发明MOCVD系统100能制造YBCO膜或者对应于其它前体的HTS,其厚度超过1.5微米;其材料密度和光滑度增大,使电流容量增大,至少超过100A/cm宽度。

在另一实施方式中,通过单独安装的喷头来将单独前体提供给基材带116,而不是使用多隔室喷头(为单一单元),将多种前体转移到MOCVD系统100的沉积区118中。各个单独安装的喷头具有相连的独立加热器,用于加热基材带116。

图2说明了本发明实施方式中用于制造电流容量得到提高的多层HTS涂布带的MOCVD系统101。MOCVD系统101包括常规的MOCVD反应器110,它是一种真空密封沉积室,在其中发生MOCVD过程,如可以保持在如1.6乇压力下的冷壁反应器。MOCVD反应器110包住接近基材加热器114的多隔室喷头112。基材带116位于沉积区118中多隔室喷头112和基材加热器115之间并在它们之间沿多隔室喷头112的长度(即,基材带116暴露在前体蒸汽中的区域)移动。所述基材带116是各种金属形成的柔韧基材,如不锈钢或镍合金,如Inconel;之前其上已经沉积具有双轴纹理(例如,(100)<001立方纹理)的缓冲层,如钇稳定化氧化锆(YSZ)和/或氧化铈(CeO2)。基材带116能耐受900℃的温度,并且其尺寸可以变化以满足所需的产品和系统限制。例如,基材带116的厚度为25微米,宽度为1厘米,长度为100米。

多隔室喷头112是通过多隔室113(例如,隔室113a、隔室113b、隔室113c、隔室113d和隔室113e,如图1和2所示)中的细孔将蒸汽均匀分布到基材带116上的装置。多隔室喷头112中的各隔室113包括均匀分布其区域中的多个细孔,它们通过普通入口进料(未显示)。而且,多隔室喷头112中的各隔室113是相互物理分隔的,使通过一个隔室113分布的蒸汽前体不会和相邻的隔室113的蒸汽前体混合。多隔室喷头112的总长、多隔室喷头112中隔室113的数量、各隔室113的长度以及进入各隔室113的蒸汽前体的具体组成可以由用户根据具体应用来确定。

在沉积工艺中,基材带116的温度通过基材加热器114来适当控制。基材加热器114是熟知的单区或多区基材加热器,它通过辐射加热元件如红外灯将基材带116加热至700-950℃。或者,基材加热器114是通过加热元件如Kanthal或MoSi2的电阻加热器。

MOCVD系统101还包括第一和第二前体传送系统。如图3所示,各传送系统包括液体源206,它是由例如不锈钢形成的储槽,它盛放含有有机金属前体(如钇、钡和铜)以及合适溶剂混合物的溶液。液体源206给液体前体传送泵202进料,其流速低,在0.1-10ml/min之间。泵202是高压低流速的泵,如高压液相色谱(HPLC)泵。泵202向前体汽化器204进料,在所述汽化器中,前体溶液进行闪蒸,并与惰性载气如氩气或氮气混合,传送到多隔室喷头112中。所述前体蒸汽通过管线122离开前体汽化器。在蒸汽管线122进入反应器110之前,氧气管线128朝前体蒸汽管线122打开,所述氧气管线128是供氧气通过的管道或管道系统,将氧气引入在前体蒸汽管线122中流动的前体蒸汽及其惰性载气中。所述前体蒸汽管线的各实例(通过122数字之后的小写字母来表示)进入反应器110,便于通过喷头112传送到基材116上。

最后,MOCVD系统101包括连接到反应器110上的真空泵142。所述真空泵142是市售的真空泵,能将真空压保持在10-3乇数量级,如Leybold D408型。或者真空泵142的功能通过组合机械泵和机械推进器如Edwards EH500型来完成,以得到适用于量液体前体的真空度。

前体传送系统120和真空泵142均位于反应器110的外部。此外,本领域那些技术人员应意识到所述MOCVD系统101还包括各种传感和控制器件,如压力计和热电偶,为简化起见在图2或3中未显示。

在沉积区118中形成不同的区域,并且和多隔室喷头112中各隔室113相连。在图2所示实施例中,从隔室113a分配来的蒸汽在区A中沉积到基材带116上,从隔室113b分配来的蒸汽在区B中沉积到基材带116上,从隔室113c分配来的蒸汽在区C中沉积到基材带116上,从隔室113d分配来的蒸汽在区D中沉积到基材带116上,以及从隔室113e分配来的蒸汽在沉积区118的区E中沉积到基材带116上。而且,图2所示实施例显示来自液体源120x的蒸汽前体通过蒸汽管线122x送入隔室113a、113c和113e。类似地,来自液体源120y的蒸汽前体通过蒸汽管线122y送入隔室113b和113d。

下面利用图4b中所示的多层涂布带来说明MOCVD系统101的操作细节。

图4b说明了通过图2所示MOCVD系统101形成的多层涂布带200的截面图。所述多层涂布带200包括基材带116,在其上首先沉积第一层210,之后相继是层212、层214、层216,最后是层218。层210、层212、层1214、层216和层218各自由HTS膜通过图2所示的MOCVD系统101形成。例如,所述层210、层214和层218由YBCO形成,各层的一般厚度至多1.5微米,层212和层216由钐-钡-铜-氧化物(SmBa2Cu3O7或Sm123)形成,各层的一般厚度至多0.2微米。

用以上MOCVD系统101所得具体HTS材料形成的层来形成多层涂布带200的过程如下所述。

通过激活真空泵142,在反应器110中形成足够的真空。基材带116通过沉积区118的直线移动以从区A到区E的方向开始。(将基材带116移动的机械并未显示。)激活基材加热器114,基材带116的温度升至700-950℃的范围内。

液体源206包含钇、钡和铜的四甲基庚二酮(THD)化合物以及合适溶剂(如四氢呋喃和异丙醇)混合物在室温下的溶液,形成第一液体有机金属前体。

激活泵202,将来自液体源206的钇-钡-铜液体前体送入前体汽化器204中,在汽化器中,所述溶液在约240℃下立即闪蒸,然后和惰性载气如氩气或氮气混合,从气体管线104进入前体汽化器204,形成钇-钡-铜蒸汽前体。然后所述钇-钡-铜蒸汽前体使用载气如氩气通过前体蒸汽管线122x送入反应器110中,它通过加热线圈(未显示)可以保持在合适温度(通常是200-300℃)下。此外,在蒸汽前体进入反应器110之前通过氧气管线128将氧气引入所述蒸汽前体中。蒸汽管线122x将包含钇-钡-铜的前体蒸汽传送到多隔室喷头112的隔室113a、113c和113e中,它们在沉积区118的区A、区C和区E中将这种前体蒸汽均匀喷到基材带116中。基材带116的温度始终通过基材加热器114控制。氧气与包含钇-钡-铜的前体蒸汽反应以及之后这一反应混合物与热基材带116接触会导致包含钇-钡-铜的前体蒸汽分解,并在沉积区118的区A、C和E中在基材带116的顶部形成YBCO膜。

在激活泵202以送入包含钇-钡-铜的液体前体的同时,激活相同的泵,将来自包含钐-钡-铜的液体源的包含钐-钡-铜的液体前体送入包含钐-钡-铜的前体汽化器中,在汽化器中,所述溶液在约240℃下立即闪蒸,然后和惰性载气如氩气或氮气混合,从气体管线104进入前体汽化器204,形成钐-钡-铜蒸汽前体。然后所述钐-钡-铜蒸汽前体使用载气如氩气通过前体蒸汽管线122y送入反应器110中,它通过加热线圈(未显示)可以保持在合适温度(通常是200-300℃)下。此外,在蒸汽前体进入反应器110之前通过氧气管线128将氧气引入所述蒸汽前体中。蒸汽管线122y将包含钐-钡-铜的前体蒸汽传送到多隔室喷头112的隔室113b和113d中,它们在沉积区118的区B和区D中将这种前体蒸汽均匀喷到基材带116中。基材带116的温度始终通过基材加热器114控制。氧气与包含钐-钡-铜的前体蒸汽的反应以及之后这一反应混合物与热基材带116接触会导致包含钐-钡-铜的前体蒸汽分解,并在沉积区118的区B和D中在基材带116的顶部形成Sm123膜。

在已经激活MOCVD系统101的反应器110中的沉积工艺之后,参看图2和4b,多层涂布带200如下所述形成。移动的基材带116在沉积区118的区A中沉积第一层YBCO层,形成层210。之后在第一层YBCO层上,基材带116在沉积区118的区B中沉积第一层Sm123层,形成层212。之后,在第一层Sm123层上,基材带116在沉积区118的区C中沉积第二层YBCO层,形成层214。之后在第二层YBCO层上,基材带116在沉积区118的区D中沉积第二层Sm123层,形成层216。之后,在第二层Sm123层上,基材带116在沉积区118的区E中沉积第三层YBCO层,形成层218。

钐和钇在元素周期表中属于相同的族,这意味着所述钐-钡-铜前体与包含钇-钡-铜的前体以很类似的性质。因此,所述钐-钡-铜超导化合物可以与钇-钡-铜超导化合物类似的沉积条件进行沉积。这种工艺条件包括蒸汽管线122n的温度为250-300℃,基材带116的温度为700-950℃,沉积压力为1-10乇,氧气分压为0.5-5乇,以及液体前体传送速度为0.25-10mL/min。由于所述钇-钡-铜前体和钐-钡-铜前体具有类似的性质,MOCVD系统101中元件的加热和冷却要求没有为满足不同材料而特殊设定。

通常,通过综合以下三个因素来确定要沉积的各层的厚度:(1)其相关隔室的物理长度;(2)其相关的蒸汽前体传送速度;以及(3)其相关的前体摩尔浓度(即,前体溶液的浓度)。此外,各膜的厚度与这三个因素成比。例如,其相关隔室的物理长度越长,薄膜越厚;相关蒸汽前体传送速度越高,则薄膜越厚;相关前体溶液的浓度越大,则薄膜的越厚。

作为这些控制因素作用的一个实施例,层212的厚度通过综合多隔室喷头112中隔室113b的物理长度、包含钐-钡-铜的前体的传送速度以及包含钐-钡-铜的液体前体的浓度来确定。

在YBCO单层中,研究显示临界电流达到在约1.5微米处最大值,并稳定下来,这是由于当薄膜变厚时,表面粗糙度会增大,使得晶体增长所用模板越来越差,并出现错位晶体,由此抑制电流的增大。此外,当薄膜变厚时薄膜变得多孔,这样抑制了电流的增大。

相反,Sm123比YBCO更光滑。这样,在YBCO层上形成Sm123会降低表面粗糙度,并形成用于生长任意其它YBCO层的更好的模板。所述YBCO-Sm123序列可以重复,不会限制或抑制电流。相反,单层厚的YBCO层显示在厚度超过约1.5微米时电流不会增大。Sm123和YBCO均是超导材料,具有相同的性质,使得层间的扩散不会是显著的问题。

使用MOCVD系统100形成多层HTS涂布带如多层涂布带200不限于YBCO和Sm123,可以使用其它超导材料。例如,可以使用其它化学上与YBCO相容的氧化物如RE123(RE=稀土金属,如铌(Nd)、铕(Eu)、镧(La)、铪(Ho)、钆(Gd))。此外,使用MOCVD系统100形成的多层HTS涂布带不限于任意具体数量的层。多隔室喷头112可以扩大到任意数量的隔室113,只要所有前体传送管线和泵的大小能以合适传送速度将前体传送到多个区域中。而且,基材加热器114可以增大到任意长度。或者,可以在基材加热器114中单独设置与隔室113直接相关的加热区,若需要的话,可以进一步控制沉积区的温度。

在另一实施方式中,可以通过单独安装的喷头将单独的前体提供给基材带116,而不是使用多隔室喷头(为单一单元),以此将多种前体转移到MOCVD系统100或101的沉积区118中。各个单独安装的喷头具有相关的独立加热器,用来加热基材带116。

虽然使用其它熟知的沉积方法(如脉冲激光沉积(PLD))可以进行多层沉积,但是PLD方法从设备成本上看是行不通的,因为各层都涉及激光。这样,多层需要多个激光器,而激光器是PLD系统中最昂贵的部件。因此,本发明MOCVD系统100或101是一种可以用来制造电流容量高的多层HTS涂布带且投入低/产出高的理想方法。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号