首页> 中国专利> 放电表面处理用电极、放电表面处理用电极的制造方法、放电表面处理装置和放电表面处理方法

放电表面处理用电极、放电表面处理用电极的制造方法、放电表面处理装置和放电表面处理方法

摘要

在以将含有金属或金属化合物的粉末压缩成型的粉末压缩体作为电极(12),在加工液(15)中或在气体中使电极(12)和被加工件(11)之间产生放电,利用其放电能量,在被加工件(11)表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜(14)的放电表面处理中使用的放电表面处理用电极(12)中,前述粉末具有小于或者等于3μm的粒径平均值。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-10-05

    授权

    授权

  • 2006-08-30

    实质审查的生效

    实质审查的生效

  • 2006-07-05

    公开

    公开

说明书

技术领域

本发明涉及在以下放电表面处理中使用的放电表面处理用电极和其制造方法,该放电表面处理是使将金属、金属化合物或陶瓷的粉末压缩成型的粉末压缩体构成的放电表面处理用电极和被加工件之间产生脉冲状放电,利用此放电能量,在被加工件表面形成由电极材料或由电极材料利用放电能量反应后的物质构成的覆盖膜。此外,本发明还涉及使用此放电表面处理用电极的放电表面处理装置和放电表面处理方法。

背景技术

近年来为了在航空器用燃气涡轮发动机的涡轮螺旋桨等中使用,对具有在高温环境下的耐磨性能或润滑性能的覆盖膜的要求非常迫切。图1是简要表示航空器用燃气涡轮发动机的涡轮螺旋桨的结构的图。如此图所示,涡轮螺旋桨1000的构成方式是,多个涡轮螺旋桨1000接触而被固定,绕未图示的轴旋转。这些涡轮螺旋桨1000之间相互接触的部分P在涡轮螺旋桨1000旋转时的高温环境下被激烈摩擦或撞击。

由于在常温下使用的耐磨损覆盖膜或有润滑作用的覆盖膜在高温环境下氧化,所以在使用这种涡轮螺旋桨1000的高温环境下(大于或等于700℃)几乎无效。因此要在涡轮螺旋桨1000等上形成含有生成具有高温下润滑性的氧化物的金属(Cr(铬)或Mo(钼))等)的合金材料的覆盖膜(厚膜)。这样的覆盖膜用焊接和喷镀等方法形成。在这里,所谓的喷镀是指使粒径为50μm左右的粉末从喷嘴喷出,在喷嘴的出口使一部分粉末熔融,在被加工件(下面称为工件)表面形成覆盖膜的加工方法,所谓焊接是指在电极棒和工件之间产生电弧,利用电弧的热量使一部分电极棒熔融,形成液滴,把它移送到工件表面,形成覆盖膜的加工方法。

这些焊接和喷镀等方法都是用人工操作,由于需要熟练,所以存在着作业难以流水线化,成本高的问题。此外特别是焊接,由于是热量集中进入工件的方法,所以在处理厚度薄的材料的情况,以及使用如单晶合金、定向凝固合金等方向控制合金那样的容易开裂材料的情况下,还有容易产生焊接裂纹或变形、成品率低的问题。

另一方面,在专利文献1等中公开了利用脉冲状放电在工件表面上形成覆盖膜的方法(下面称为放电表面处理)。此放电表面处理是把粉末压缩成型为粉笔一样的硬度的粉末压缩体,使由粉末压缩体构成的电极和工件之间产生电弧放电,使由此熔融的构成电极的材料在工件表面再凝固而形成覆盖膜的,该技术替代上述焊接或喷镀等方法,作为可以使作业流水线化的技术而受到关注。

例如,现有的放电表面处理形成在常温具有耐磨性的TiC(碳化钛)等的硬质材料的覆盖膜。除此以外,为了提高部件或金属模具的耐磨性,使用把例如平均粒径1μm左右的WC(碳化钨)的粉末压缩成型的电极,形成硬质合金或陶瓷等难氧化的硬质材料的覆盖膜。

专利文献1

国际公开第99/58744号小册子

在现有的放电表面处理中,着眼于形成在常温下具有耐磨性的TiC或WC等硬质材料的薄的覆盖膜。因此没有进行上述的用于航空器用燃气涡轮发动机的涡轮螺旋桨等上的,在高温环境下具有耐磨性能或润滑性能的覆盖膜的形成。

此外,不仅是以在常温下的耐磨性为目的硬质陶瓷覆盖膜,而且对利用可以使作业流水线化的放电表面处理,形成大于或等于大约100μm的厚膜的要求很强烈。但是,在上述专利文献1所述的电极制造方法中,是以由放电表面处理形成薄膜为主要对象,不能直接应用于形成厚膜。

在由放电表面处理形成厚膜中,认为从电极一侧的材料的提供和此提供的材料在工件表面的熔融方式对覆盖膜性能最有影响。对电极材料的提供产生影响的是电极的强度,也就是硬度。具体地说,认为电极最好具有均匀的硬度。但是,在专利文献1中,对粉末压缩成型时使电极硬度均匀成型没有考虑,电极本身的硬度有可能产生波动。如专利文献1所示,在形成薄膜的情况下,由于形成的覆盖膜薄,电极的硬度即使有一些不均匀,对覆盖膜几乎没有影响。另一方面,在进行厚膜形成的情况下,只有在处理范围内均匀提供大量的电极材料,才能形成厚度一样的覆盖膜,但如果电极硬度即使或多或少存在有不均匀,则用这部分电极形成的覆盖膜产生差异,不能形成均匀厚度的覆盖膜,此外如果使用硬度不均匀的电极,还存在有在放电表面处理时由使用的电极的部位而产生覆盖膜的形成速度和覆盖膜的性质的波动,不能得到致密的覆盖膜,不能进行恒定质量的表面处理的问题。

此外,金属和陶瓷的粉末一般用雾化法制造,但是由于例如粒径小于或者等于3μm的粉末只能得到全部处理粉末的大约数几%,所以价格非常贵,而且获取量受周围环境变化等的影响,存在有成品率差的问题。此外由于一般用雾化法可以制造的粒径以6μm左右为极限,所以得到粒径小于或者等于3μm的粉末是非常困难的。此外用雾化法制造的粉末由于是使原料蒸发后,使其凝缩来制造,所以得到的粉末受表面张力的影响而成为球形。用这样的球形粉末成型电极的情况下,还存在由于粉末之间为点接触,所以颗粒之间的结合弱而变脆的问题。

本发明鉴于上述的问题而提出,目的是得到以下放电表面处理用电极,其具有均匀硬度,并且放电表面处理时可以形成有均匀厚度且厚度大于或等于100μm的厚的覆盖膜。

此外,目的是得到以下放电表面处理用电极,其具有均匀硬度,并且放电表面处理时可以形成均匀而且足够致密的厚的覆盖膜。并且,目的是得到以下放电表面处理用电极,其可以形成在高温环境下具有耐磨性和润滑性的厚的覆盖膜。

并且此外,目的是得到这些放电表面处理用电极的制造方法,和使用这些放电表面处理用电极的放电表面处理装置和其方法。

发明内容

为了实现上述目的,本发明涉及的放电表面处理用电极是在以下放电表面处理中使用的,该放电表面处理是以将含有金属或金属化合物的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述粉末具有小于或者等于3μm粒径的平均值。

此外,下一个发明涉及的放电表面处理用电极是在以下放电表面处理中使用的,该放电表面处理是以将含有金属、金属化合物或者陶瓷的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述粉末具有非球形的形状。

此外,下一个发明的放电表面处理用电极是在以下放电表面处理中使用的,该放电表面处理是以将金属或金属化合物的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述粉末是将具有小粒径分布的小粒径粉末,和具有大于或者等于该小粒径粉末的2倍的平均粒径的大粒径粉末混合而成。

此外,下一个发明涉及的放电表面处理用电极是在以下放电表面处理中使用的,该放电表面处理是以将金属、金属化合物或者陶瓷的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述粉末具有小于或者等于1μm的粒径的平均值。

此外,为了实现上述目的,本发明涉及的放电表面处理用电极的制造方法,其特征在于,包含以下工序:第一工序,该工序用粉碎装置把金属、金属化合物或陶瓷的粉末粉碎成具有规定粒径的非球形粉末;第二工序,该工序使粉碎了的前述粉末成为规定形状,并压缩成型,使其具有规定硬度。

此外,为了实现上述目的,本发明涉及的放电表面处理方法是以将含有金属或金属化合物的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,使用将粒径平均值小于或等于3μm的粉末压缩成型的电极形成前述覆盖膜。

此外,下一个发明涉及的放电表面处理方法是以将含有金属或金属化合物的粉末压缩成型的粉末压缩体作为电极,在加工液中或气体中,使前述电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,使用将具有小粒径分布的小粒径粉末,和具有大于或等于此小粒径粉末的2倍的平均粒径的大粒径粉末混合后压缩成型的电极形成前述覆盖膜。

此外,下一个发明涉及的放电表面处理方法,其特征在于,使将粒径的平均值小于或者等于1μm的粉末压缩成型的粉末压缩体构成的电极和被加工件之间产生放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜。

此外,为了实现上述目的,本发明涉及的放电表面处理装置,将包含金属或者金属化合物的粉末压缩成型的粉末压缩体构成的电极,和要形成覆盖膜的被加工件配置在加工液或者气体中,通过将前述电极和前述被加工件电连接的电源装置,使前述电极和前述被加工件之间产生脉冲状放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述电极是将具有小于或者等于3μm的粒径平均值的粉末压缩成型而制造的。

此外,下一个发明涉及的放电表面处理装置具有以下部分:电极,其由将含有金属、金属化合物的粉末压缩成型的粉末压缩体构成;被加工件,其要形成覆盖膜;以及电源装置,其将前述电极和前述被加工件电连接,并且,通过前述电源装置使前述电极和前述被加工件之间产生脉冲状放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜,其特征在于,前述电极是将以下粉末压缩成型而制造的,该粉末由将具有小粒径分布的小粒径粉末,和具有大于或者等于该小粒径粉末的2倍的平均粒径的大粒径粉末混合而成。

此外,下一个发明涉及的放电表面处理装置,其特征在于,具有以下部分:电极,其由将粒径平均值小于或者等于1μm的粉末压缩成型的粉末压缩体构成;被加工件,其要形成覆盖膜;电源装置,其将前述电极和前述被加工件电连接,通过前述电源装置使前述电极和前述被加工件之间产生脉冲状放电,利用其放电能量,在前述被加工件表面形成由电极材料或电极材料利用放电能量反应后的物质构成的覆盖膜。

附图说明

图1是表示航空器用燃气涡轮发动机的涡轮螺旋桨结构的概略的图。

图2是表示在放电表面处理装置中放电表面处理概略的图。

图3A是表示放电时施加在放电表面处理用电极和工件之间的电压波形的图。

图3B是表示放电时流经放电表面处理装置的电流的电流波形的图。

图4是表示放电表面处理用电极制造工序的一个例子的流程图。

图5是示意表示把粉末成型时的成型器状态的剖面图。

图6是简要表示硬度波动的试验的图。

图7是表示粉碎50小时后的斯特莱特硬质合金粉末的粒度分布的图。

图8是表示用平均粒径为1.8μm的鳞片状斯特莱特硬质合金粉末制造的电极内部状态的SEM(Scaning Electron Microscope)照片。

图9是通过平均粒径为6μm的球形斯特莱特硬质合金粉末作为对比例制造的电极内部状态的SEM照片。

图10是表示用此条件加工时的堆积状态的照片。

图11是示意表示珠磨机装置的粉碎原理的图。

图12是表示粉碎6小时后的斯特莱特硬质合金粉末的粒度分布的图。

图13是示意表示此实施方式8的电极材料结构的图。

图14A是表示使用大粒径粉末的比例为10%的电极,以小的放电能量进行放电表面处理的情况下的覆盖膜的状态的SEM照片。

图14B是表示使用大粒径粉末的比例为50%的电极,以小的放电能量进行放电表面处理的情况下的覆盖膜的状态的SEM照片。

图14C是表示使用大粒径粉末的比例为50%的电极,以大的放电能量进行放电表面处理的情况下的覆盖膜的状态的SEM照片。

图14D是表示使用大粒径粉末的比例为80%的电极,以小的放电能量进行放电表面处理的情况下的覆盖膜的状态的SEM照片。

图14E是表示使用大粒径粉末的比例为80%的电极,以大的放电能量进行放电表面处理的情况下的覆盖膜的状态的SEM照片。

图15是表示大粒径粉末的比例和覆盖膜的致密度之间的关系的曲线。

图16是表示大粒径粉末的比例和电极的成型性之间的关系的曲线。

图17是表示使用由粒径6μm和1μm的Co基的金属粉末以4:1混合的粉末制造的电极进行放电表面处理,由此形成的覆盖膜的剖面的状态的SEM照片。

图18是表示构成电极的粉末粒径和覆盖膜的空隙率的关系的曲线。

图19是表示通过使用由粒径0.7μm的Co系合金粉末制造的电极进行放电表面处理,形成的覆盖膜的剖面的状态的SEM照片。

具体实施方式

下面参照附图,对本发明涉及的放电表面处理用电极、放电表面处理用电极的制造方法、放电表面处理装置和放电表面处理方法的优选实施方式进行详细说明。

实施方式1.

首先,对本发明中使用的放电表面处理方法和其装置的概略进行说明。图2是表示在放电表面处理装置中进行的放电表面处理概略的图。放电表面处理装置1由要形成覆盖膜14的被加工件(下面称为工件)11、用于在工件11表面上形成覆盖膜的放电表面处理用电极12,以及使工件11和放电表面处理用电极12电连接、为使两者之间产生电弧而向两者提供电压的放电表面处理用电源13构成。放电表面处理在液体中进行的情况下,还设置有加工槽16,以使工件11和放电表面处理用电极12的与工件11对向的部分之间以油等的加工液体15充满。此外,放电表面处理在气体中进行的情况下,把工件11和放电表面处理用电极12放置在处理气氛中。此外,在图2和以下的说明中,以在加工液15中进行放电表面处理的情况为例。此外,以下有时把放电表面处理用电极简单记作电极。此外,在以下将放电表面处理用电极12和工件11的对向的面之间的距离称之为极间距离。

对这种结构的放电表面处理装置1中的放电表面处理方法进行说明。放电表面处理,例如,把要形成覆盖膜14的工件11作为阳极,把成为覆盖膜14提供源的、将金属和陶瓷等的平均粒径10nm~数μm的粉末成型得到的放电表面处理用电极12作为阴极,这些电极通过未图示的控制机构控制极间距离,在加工液15中使两者不接触,同时使两者之间产生放电。图3A和图3B是表示在放电表面处理时的放电脉冲条件的一个例子的图,图3A是表示放电时施加在放电表面处理用电极和工件之间的电压波形的图,图3B是表示放电时流经放电表面处理装置的电流的电流波形的图。此外,图3A中的电压,在从工件11一侧看,电极12一侧为负极性的情况下,电压波形曲线为正。此外,图3B中的电流,把图2中从电极12通过放电表面处理用电源13流向工件11的方向作为正方向。如图3A所示,在时刻t0,在两极之间施加无负荷电压ui,经过放电延迟时间td后的时刻t1,在两极之间开始流过电流,开始放电。此时的电压为放电电压ue,此时流过的电流为峰值电流ie。而在时刻t2,当停止向两极之间提供电压时,不流过电流。也就是放电停止。在这里,把t2-t1称为脉冲宽度te。间隔间歇时间t0,反复在两极之间施加此时刻t0~t2的电压波形。

当在放电表面处理用电极和工件11之间产生放电时,利用此放电的热量使工件11和电极12的一部分的熔融。在这里,在电极12的颗粒之间的结合力弱的情况下,利用放电造成的爆炸冲击波或静电力使熔融的电极12的一部分(以下称为电极颗粒)21从电极12拉开,向工件11表面移动。然后,当电极颗粒21到达工件11表面时,再凝固后成为覆盖膜14。此外,被拉开的电极颗粒21的一部分与加工液15中或气体中的成分22反应生成的物质23也在工件11表面形成覆盖膜14。这样,在工件11表面上形成覆盖膜14。但是,在电极12的粉末之间的结合力强的情况下,利用放电造成的爆炸冲击波或静电力,电极12不能剥离,不能把电极材料提供给工件11。也就是说,通过放电表面处理是否可以形成厚的覆盖膜,受到从电极12一侧的材料提供、其提供的材料在工件11表面的熔融及与工件11材料的结合方式的影响。所以对该电极材料提供产生影响的是电极12的硬度。

在此,对放电表面处理中使用的放电表面处理用电极12的制造方法进行说明。图4是表示放电表面处理用电极制造工艺的一个例子的流程图。此外,在此图4所示的流程图中,根据情况的不同,也有在制造放电表面用电极时不需要的工序。例如在可以得到平均粒径小于或者等于3μm的小粒径粉末的情况下,就不需要下面说明的粉碎工序。

首先,把具有要在工件11上形成的覆盖膜14成分的金属、金属化合物或陶瓷等的粉末粉碎(步骤S1)。在由多种成分构成的情况下,按要求的比例将每个成分的粉末混合后粉碎。例如,把市场上通用的平均粒径数十μm的金属或陶瓷等的球形粉末,用球磨机等粉碎机粉碎到小于或者等于3μm平均粒径。也可以在液体中进行粉碎,这种情况下,使液体蒸发而使粉末干燥(步骤S2)。干燥后的粉末由于粉末和粉末形成凝聚的大块,所以要进行筛选,以使此大块破碎,同时把在下面的工序中使用的蜡和粉末充分混合(步骤S3)。例如,在残留有凝聚了的粉末的筛网上放上陶瓷球或金属球,使网振动,凝聚了的块利用振动的能量和与球的冲击而破碎,穿过网眼。仅把穿过此网眼的粉末用于下面的工序。

在这里,对步骤S3中筛选粉碎的粉末进行说明。在放电表面处理中,为了放电而在放电表面处理用电极12和工件11之间施加的电压一般为80V~300V的范围。如果把此范围的电压施加在电极12和工件11之间,放电表面处理中的电极12和工件11之间的距离为0.3mm左右。如上所述,在放电表面处理中,由于在两极之间产生的电弧放电,构成电极12的凝聚了的块以其大小直接从电极12脱离。其中如果块的大小小于或者等于极间距离(小于或者等于0.3mm),则即使在极间存在块,也会产生随后的放电。此外由于放电在距离近的部位产生,在块存在的地方引起放电,因放电的热能和爆炸力,可以使块粉碎细化变碎。

但是,如果构成电极12的块的大小大于或者等于极间距离(大于或者等于0.3mm),则此块由于放电以原封不动的大小从电极12脱离,在工件11上堆积,或漂浮在电极12和工件11之间充满加工液的极间。如果如前者那样堆积大的块,由于在电极12和工件11的距离近的地方产生放电,所以放电集中在此部分(大的块的部分),在其他的地方不发生放电,不能均匀堆积覆盖膜14。此外,此大的块不能用放电的热完全熔融。因此覆盖膜14非常脆,脆到用手可以剥落的程度。此外,如果如后者那样大的块在极间漂浮,则使电极12和工件11之间短路,不能产生放电。换句话说,为了要均匀形成覆盖膜14而且稳定地放电,在构成电极的粉末中不能存在因粉末凝聚形成的、大于或者等于极间距离的大小的大块。此粉末的凝聚容易在金属粉末或导电性陶瓷的情况下产生,在非导电性的粉末的情况下不容易产生。此外粉末的平均粒径越小,越容易产生粉末的凝聚。因此为了防止因这样的粉末的凝聚产生的块造成的放电表面处理中的弊病,在步骤S3中的筛选凝聚的粉末的工序是必要的。根据以上的看法,进行筛选时必须使用尺寸比极间距离小的网眼。

然后,在后面的工序中的冲压时,为了可以很好地向粉末内部传递冲压压力,在粉末中混合重量比为大约1%~10%的石蜡等的蜡(步骤S4)。当把粉末和蜡混合时,可以改善成型性,但由于粉末的周围再次被液体包敷,因此由于其分子间的力或静电力的作用而凝聚,形成大块。所以为了把重新凝聚的块打碎而要进行筛选(步骤S5)。其中筛选的方法与在上述的步骤S3中的方法相同。

随后通过压缩冲压将得到的粉末成型(步骤S6)。图5是示意表示将粉末成型时的成型器状态的剖面图。把下冲头104从金属模具(冲模)105上形成的孔的下部插入,在由此下冲头104和金属模具(冲模)105形成的空间中,填充在上述步骤S5中经筛选的粉末(在由多种成分构成的情况下为粉末的混合物)101。此后把上冲头103从金属模具(冲模)105上形成的孔的上部插入。然后用加压器等从填充了这样粉末101的成型器的上冲头103和下冲头104的两侧施加压力,把粉末101压缩成型。下面把压缩成型的粉末101称为粉末压缩体。此时如果冲压压力高,则电极12变硬,如果冲压压力低,则电极12变软。此外在电极材料的粉末101粒径小的情况下,电极12变硬,在电极材料的粉末101粒径大的情况下,电极12变软。

此后把粉末压缩体从成型器中取出,在真空炉或氮气气氛的炉中加热到粉笔程度的硬度(步骤S7)。加热时,如果提高加热温度,则电极12变硬,如果降低加热温度,则电极12变软。此外利用加热也可以使电极12的电阻降低。因此,即使不掺入蜡进行压缩成型的情况下加热也有意义。由此,进行粉末压缩体中的粉末之间的结合,制造具有导电性的放电表面处理用电极12。

在利用以下的实施方式1、2的放电表面处理而形成厚膜中,要求的功能是具有高温环境下的耐磨性、润滑性等,且对象是可以转用于高温环境下也能使用的部件等的技术。为了形成这样的厚膜,与现有技术中用于形成硬质陶瓷的以陶瓷为主要成分的电极不同,使用把以金属成分为主要成分的粉末压缩成型,然后根据情况,进行加热处理的电极。此外,为了通过放电表面处理形成厚膜,电极12必须具有以下规定的特征,该特征是为了通过放电脉冲向工件11一侧大量提供电极材料,而一定程度降低电极12的硬度等,涉及电极的材质或硬度等的特征。

在制造电极中的步骤S6的冲压工序时,外围部分的粉末因与金属模具的接触而受到强烈挤压,但压力不能充分传递到内部。因此产生电极的外围部分变硬、内部变软的电极的硬度波动(电极外围部分和内部产生的硬度差)。所以在此实施方式1中,着眼于这一点,对得到没有电极硬度波动放电表面处理用电极的方法进行说明。

发明人通过各种材料进行制造放电表面处理用电极的试验的结果,为了实现硬度大体均匀的电极,着眼于把电极材料粉末压缩成型时的材质均匀化,发现电极材料粉末的粒径对电极硬度的影响最大。

表1是表示电极材质、电极材质的粉末粒径、电极材质的粉末的硬度、电极的硬度波动之间关系的表。

表1

  编号  电极材质  粒径  (μm)  粉末硬  度  硬度波动  ○:无波动  △:稍有波  动  ×:有波动  1  CBN(Ti涂层)  小(2-3)  硬  ○  2  斯特莱特硬质合金2  大(6)  中  ×  3  斯特莱特硬质合金2(增  加石蜡量)  大(6)  中  △  4  斯特莱特硬质合金2细  粉  小(1)  中  ○  5  斯特莱特硬质合金3  大(6)  中  ×
  6 斯特莱特硬质合金3细 粉 小(1)  中  ○  7 Co 小(1)  软  ○  8 Co 中(4)  软  △  9 Co 大(8)  软  ×

如这个表1所示,按编号顺序把作为各种电极的材质的“电极材质”、作为电极材质的粉末平均粒径的“粒径(μm)”、作为电极材质的粉末硬度的“粉末硬度”进行组合,按图4的流程制造电极,将其电极的硬度波动汇总。此外,在Co粉末的情况下,在步骤S6的冲压工序中,以93.3MPa压缩粉末。

此外,在“粒径”中,将平均粒径小于或者等于3μm的情况定为“小”,4~5μm的情况定为“中”,大于或等于6μm的情况定为“大”。在“粉末硬度”中,大体将威氏硬度小于或者等于500的材料定为“软”,将威氏硬度500~1000的材料定为“中”,将威氏硬度大于或等于1000的材料定为“硬”。

此外,“硬度波动”表示在电极中多个位置上的电极硬度的差。电极的硬度与构成电极的材料即粉末的硬度无关,而与粉末的结合程度有密切关系。例如,即使是由硬的材料的粉末构成的电极,在粉末的结合程度弱的情况下,电极也变软而容易崩溃。在本发明中,使用JIS K 5600-5-4中规定的涂膜用铅笔划痕试验作为电极硬度波动的指标。在相同的试验中在多个部位上评价值的差小于或者等于3级的(例如B和4B等)情况下,认为硬度没有波动“○”,此差小于或者等于5级的(例如B和6B等)情况下,认为硬度波动小“△”,比这更大的情况认为有波动“×”。当然也可以用其他等价的试验结果作为指标。

图6是简要表示硬度波动试验的图。在此图中是表示放电表面处理用电极12具有圆筒形状的情况。此底面12A是在放电表面处理时与工件对向配置的面,是产生放电的面。以从在此底面12A内的多个部位(例如点A和点B)上的电极硬度求出的硬度波动、从侧面12B的多个部位(例如点C和点D)上的电极硬度求出的硬度波动、从底面(产生放电的面)12A和侧面12B的多个部位(例如点A和点D)上的电极硬度求出的硬度波动、以及从把此电极12剖开的情况下的电极内部的硬度求出的硬度波动的方式,对电极12的整体的硬度波动进行评价。

在表1中,编号1的电极材质“CBN(Ti涂层)”表示由被Ti涂覆立方晶系氮化硼(Cubic Boron Nitride)粉末表面的粉末制造的电极。此外,编号2的电极材质“斯特莱特硬质合金2”是表示由以Co作为主要成分,混合例如Cr、Ni、Mo等其他成分的合金即斯特莱特硬质合金(stelite)2这样的材质的粉末制造的电极,编号3的电极材质“斯特莱特硬质合金3”是表示由以Co作为主要成分,混合例如Cr、W、Ni等其他成分的合金即斯特莱特硬质合金3这样的材质的粉末制造的电极。

根据表1所示的实验结果可以看出,如上所述,电极材料的粉末粒径的大小对压缩成型时形成的电极硬度的波动有影响。并且,如果对试验结果进行研究,发现与材料的粉末的硬度无关,在使用粒径小的材料的情况下,电极硬度没有波动。具体地说,为了制造压缩成型时材质均匀的成型品,必须使电极材料的粉末的平均粒径小于或者等于3μm左右,更好的是使电极材料的粉末的平均粒径小于或者等于1μm左右。这样能使电极的硬度没有波动。这些研究通过例如编号2的电极和编号4的电极的对比、编号5的电极和编号6的电极的对比、或编号7的电极和编号8的电极的对比可以明确。

为了参考,作为用于改善电极硬度的波动的方法,研究了以下的2个方法。首先,第1个方法是,考虑通过增加压缩成型时的金属模具内的流动性,可以使电极硬度均匀,而在电极材料的粉末中大量混合石蜡等的蜡的方法。但是,此结果从表1中编号2和编号3的对比可以看出,电极的均匀性可以有一定程度的改善,但是没有达到完全没有波动的状态。在这里,编号3的情况仅混合7重量%的蜡,通过再增加蜡的量有进一步改善的可能,但是如蜡增加过多的话,可以想象会存在有材料的粉末之间难以结合等问题,所以不能说是非常有效的方法。因此电极材料的粉末中即使混合大量的蜡,成型的电极硬度也难以没有波动。

第2个方法是在把材料的粉末装入金属模具中进行压缩时,使金属模具振动,用比较低的冲压压力进行强压缩的方法。但是,用此方法在最后的冲压阶段产生硬度的波动,达不到完全没有波动的状态。

由此实施方式1,通过使电极成分的粉末粒径的平均值小于或者等于3μm,可以制造没有硬度波动的电极,从而可以形成在高温环境下发挥润滑性的覆盖膜等均匀的厚膜。

实施方式2.

在此实施方式2中,对使用多种粉末作为电极材质而制造放电表面处理用电极的情况进行说明。

表2是表示电极材质、电极材质的粉末粒径、电极材质的粉末的硬度、电极的硬度波动之间关系的表。

表2

  编  号  电极材质  粒径  (μm) 粉末 硬度  硬度波动  ○:无波动  △:稍有波动  ×:有波动  1  TiC+Ti  小(2)+小(3) 硬+软  ○  2  Cr2O3+Cr  小(L6)+大(10) 硬+软  ○  3  CBN+斯特莱特硬质合金  1  大(6)+大(6) 硬+中  ×  4  Cr2O3+斯特莱特硬质合金  1  小(L6)+大(10) 硬+中  ○  5  Al2O3+Ni  大(8)+小(1) 硬+软  ○  6  ZrO2+Ni  大(8)+小(1) 硬+软  ○  7  斯特莱特硬质合金2+Co  (2∶1)  大(6)+小(1) 中+软  ○  8  斯特莱特硬质合金2+Co  (4∶1)  大(6)+小(1) 中+软  ○  9  斯特莱特硬质合金2+Co  (9∶1)  大(6)+小(1) 中+软  △

此表中的“电极材质”表示在制造电极时使用的材质。例如,编号1的“TiC+Ti”意思是把TiC粉末和Ti(钛)粉末按1∶1的重量比例混合制造电极,编号7的电极材质“斯特莱特硬质合金2+Co(2∶1)”意思是把斯特莱特硬质合金2这样的材质的粉末和Co(钴)粉末按2∶1的重量比例混合制造电极。此外,编号3和编号4的“斯特莱特硬质合金1”表示以Co为主要成分,混合Cr、W(钨)、Ni(镍)等的其他成分的合金即斯特莱特硬质合金1这样的材质粉末制造的电极。

此外,“粒径(μm)”表示电极材质各自的粉末的平均粒径,表示对应电极材质的组合的粒径。例如编号7的“大(6)+小(1)”意思是电极材质“斯特莱特硬质合金2+Co”中的斯特莱特硬质合金2粉末的粒径大(粒径6μm)、Co粉末的粒径小(粒径1μm)。此外,表示这个粒径的“大”、“中”、“小”的定义与实施方式1的表1的相同,所以省略其说明。

此外,“粉末硬度”表示电极材质各自的粉末的硬度,表示对应于电极材质的组合的粒径。例如编号7的“中+软”意思是电极材质“斯特莱特硬质合金2+Co”中的斯特莱特硬质合金2的硬度为中、Co粉末的硬度为软。表示这个粉末硬度的“硬”、“中”、“软”的定义也与实施方式1的表1的相同,所以省略其说明。此外“硬度波动”的内容也与在实施方式的表1中说明的相同,所以省略了其说明。

从表2所示的试验结果可以看出,如实施方式1中说明的那样,电极材质的粉末粒径的大小对压缩成型时产生的电极硬度波动有影响。也就是,把粒径大(粒径6μm左右)的不同材质的粉末相互混合形成电极的情况下,压缩成型时电极的硬度变得不均匀,但通过混合粒径小(粒径1μm左右)的粉末,可以增加电极硬度的均匀性。具体地说,混合材质不同的粉末制造电极的情况下,使一个材质的粉末的平均粒径小于或者等于3μm,其他材质的粉末的平均粒径大于3μm,可以抑制压缩成型时产生的电极硬度波动。此外,如表2的编号9的例子所示的那样,可以看出,粒径小的粉末的混合比例即使混合10%左右,对使硬度均匀也有相应的效果。

在此实施方式2中,如表2的编号7和编号8所示,例举了在粒径比较大(比3μm大)的斯特莱特硬质合金粉末中混合粒径小的(小于或者等于3μm的)Co粉末,各自的平均粒径不同的两个(多个)成分混合的情况。但是,为了使电极中的材料成分均匀,最好以在粒径比较大(例如6μm左右)的斯特莱特硬质合金粉末中混合粒径小(例如1μm左右)的斯特莱特硬质合金粉末等方式,把相同成分而粒径不同的粉末混合,再把不同成分相互混合。

以相同材料的粉末把粒径比较大的粉末和粒径比较小的粉末混合有如下的意义。第1,对抑制电极的制造成本有意义。一般粒径小的粉末制造成本高,如果使用小的粉末,则电极的成本增加。因此通过在成本较低的粒径大的粉末中混合少量的粒径小的粉末,可以抑制电极的成本,使其较低。第2,对控制由粒径不同的粉末混合成而得到的覆盖膜的材料的熔融程度有意义。一般由电极材料构成覆盖膜,但在成为覆盖膜的电极材料中,有因放电的能量而熔融的部分和不熔融的部分。作为覆盖膜要求的性能,有时要求熔融部分和不熔融部分的比例为规定的比例。通过控制电极粉末的粒径,可以控制此比例。具体地说,粒径小的粉末在因放电的热而熔融的状态下到达工件上,而粒径大的粉末大多在没有完全熔融的状态下到达工件上,利用这样的性质,可以形成希望状态的覆盖膜。

由本实施方式2,由于可以制造没有硬度波动的电极,所以可以形成在高温环境下发挥润滑性的覆盖膜等均匀的厚膜。此外,由于即使在微细粉末的量少的情况下,也能形成没有硬度波动的电极,所以可以降低制造电极的成本。

以上,在实施方式1、2中叙述了使放电表面处理用电极的硬度均匀的制造技术。但是,根据情况的不同,例如在不能更多混合粒径小的粉末的情况下,仍然会残留有电极硬度的波动。常见的电极硬度波动的方式是如上所述的电极外围部分变硬的方式。电极硬度这样产生波动的情况下,也有通过制造电极后对电极的外围进行去除加工,而得到具有均匀硬度的电极的方法。

实施方式3.

如实施方式1、2中说明的那样,为了制造具有均匀硬度的电极,构成电极的粉末必须具有规定的粒径。例如,通过放电表面处理形成在高温环境下具有润滑性和耐蚀性的覆盖膜的情况下,为了制造具有均匀硬度的电极,必须用粒径小于或者等于3μm的粉末制造电极。但是,粒径小于或者等于3μm的粉末市售的仅有有限的材质,对于在工件表面形成的覆盖膜的各种各样的材质,不能在市场上得到粒径小于或者等于3μm的粉末。例如,平均粒径1μm左右的WC粉末在市场上广泛流通,可以容易而且价格便宜地得到,但其他的粉末就难以得到。因此仅用市场上流通的粒径小于或者等于3μm的粉末,不能制造各种各样材质的放电表面处理用电极。所以在下面的实施方式3~7中,对可以制造各种各样材质的放电表面处理用电极的制造方法进行说明。

下面的实施方式3~7主要涉及上述图4表示的放电表面处理用电极的制造工序的流程图中的步骤S1的粉末的粉碎工序。首先对电极材料的粉末粒径和电极的硬度的关系进行说明。一般在电极材料的粉末粒径小的情况下,电极变硬,在电极材料的粉末粒径大的情况下,电极变软。例如如果省略了图4的步骤S1的粉碎工序,直接使用平均粒径数十μm的粉末制造电极,则该电极会变得具有表面的硬度高,中心部分的硬度低的硬度波动。

如果这样使用平均粒径大于或等于数十μm的大粒径的粉末制造电极,作为硬度波动的原因可以进行以下的研究。在粉末和粉末之间形成的空隙,颗粒越大,该空隙也相似地越大。如果为了把平均粒径大的粉末成型为电极形状,而施加冲压压力,则仅是在电极外侧的粉末移动,埋入粉末和粉末之间形成的空隙。换句话说,电极外围部分的摩擦力变大,可以仅仅由此电极外围部分的摩擦力保持对冲压压力的反作用力。因此冲压压力不能被传递到电极的内部。其结果,制造的电极成为表面硬、内部软的状态。

在使用这种表面硬内部软的硬度不均匀的电极进行放电表面处理的情况下,在电极的外围部分,由于它的硬度硬,电极材料不能向工件一侧提供,成为刻模放电加工那样的切削工件表面的去除加工。另一方面,在电极的中心部分,由于它的硬度脆,所以容易向工件一侧提供电极材料,处理开始后马上被消耗。其结果,放电表面处理后的电极表面形成外围部分向外突出,中心部分洼陷的形状。在放电表面处理中继续使用这种电极的情况下,因为在与工件的距离短的部位产生放电,所以放电仅在外围部分发生,处理变成了工件表面的去除加工。也就是说,不能进行向工件表面的堆积加工。所以有必要通过使用小粒径的粉末制造电极,来抑制电极硬度的波动。

此实施方式3中,图4的步骤S1的粉末粉碎工序的特征是,通过球磨机装置等的粉碎装置,打碎在形成覆盖膜中使用的材质的电极粉末,使其分裂而微细化。此外,粉末的平均粒径最好小于或者等于3μm。

用球磨机装置粉碎的粉末由于被打碎而微细化,所以它的形状变成有平面的鳞片状,与球相比,表面积变大。如果把这些粉末颗粒压缩成型,由于颗粒和颗粒为面接触,可以制造具有适当强度的电极。此外,被粉碎的鳞片状的粉末,由于具有其平面之间相互面对面的性质,所以在粉末和粉末之间形成的空隙可以变得非常小。因此冲压成型时,可以把冲压的压力传递到电极的内部。此外使用这样的电极也提高了形成的覆盖膜的致密性。

接下来,举出使用通过球磨机装置把平均粒径粉碎到小于或者等于3μm的粉末制造电极,用此电极进行放电表面处理的具体例子进行说明。在这里,举出了由使平均粒径成1.8μm而粉碎的斯特莱特硬质合金粉末制造的电极作为例子。此斯特莱特硬质合金粉末是由Cr25wt%、Ni10wt%、W7wt%、C(碳)0.5wt%、其余为Co构成的合金。此外,除了此构成的斯特莱特硬质合金粉末以外,也可以使用由Mo28wt%、Cr17wt%、Si(硅)3wt%、其余为Co构成的合金,或者由Cr28wt%、Ni5wt%、W19wt%、其余为Co构成的合金等的斯特莱特硬质合金粉末。

电极因为是由斯特莱特硬质合金粉末按图4所示的流程图进行制造的,所以省略了对它的详细说明,仅说明与此实施方式3有关的部分。首先,在制造电极时,作为原料使用在市场上流通的平均粒径50μm左右的斯特莱特硬质合金粉末。此斯特莱特硬质合金粉末中有大到粒径大于或等于0.1mm的颗粒。在图4的步骤S1的粉碎工序中,把此平均粒径50μm左右的斯特莱特硬质合金粉末用振动式球磨机装置粉碎。振动式球磨机装置的容器(罐)和球的材质使用ZrO2(二氧化锆)。然后在容器(罐)中装入规定量的成为电极粉末的斯特莱特硬质合金,把球装到容器中。再使作为溶剂的丙酮充满容器,加入硬脂酸作为分散剂。然后使此容器(罐)振动,粉碎约50小时。

其中硬脂酸是起抑制微细化的颗粒聚集的作用的表面活性剂。只要具有这样的作用,并不限于是硬脂酸,也可以使用其他非离子类的スパ一ス70(商品名)和山梨糖醇酐单油酸脂等。此外,作为溶剂,除了丙酮以外也可以使用乙醇或甲醇等。

图7是表示粉碎50小时后的斯特莱特硬质合金粉末的粒度分布的图。在此图中,横轴是以对数刻度表示的粉末的粒径(μm),纵轴是表示在以规定的基准对横轴所示的粒径划分的区间中存在的粉末的比例(右轴)和累积比例(左轴)。在此图中,条形曲线表示存在于横轴上各区间的粉末的比例,曲线L表示从粒径小的一侧把存在于各区间的粉末的比例按顺序累加后的累积比例。如此图所示,通过50小时的粉碎,使斯特莱特硬质合金粉末的平均粒径降低到1.8μm。

此外,颗粒的粒度分布用激光衍射、散射法测定。此测定方法利用向颗粒照射激光,由于各粒径的不同,散射光量和散射图案不同。使激光在30s期间对在液体中流动的颗粒照射数万次,对其结果进行计数,得到分布,从而可以得到平均的数据。如果测定鳞片状的颗粒,得到最宽的面(鳞的表面)和最窄的面的中间值。一般地,与测定球形颗粒的情况相比,鳞片状颗粒的粒度分布宽。此外,使用由此测定方法得到的粒度分布,从粒径小的方向累计粒度分布的结果,把此累计值的50%的粒度作为平均粒径(中间粒径)。

此后,用此粉碎后的粉末,按图4的流程图,施加规定的冲压压力制造电极,使其成为φ18mm×30mm的形状。图8是表示由平均粒径为1.8μm的鳞片状斯特莱特硬质合金粉末制造的电极内部状态的SEM(Scanning Electron Microscope)照片。此外,图9是由平均粒径为6μm的球形斯特莱特硬质合金粉末作为对比例制造的电极内部状态的SEM照片。

在图8所示的此实施方式3的电极中,由于被粉碎的粉末不是球形,所以粉末颗粒和粉末颗粒之间的空隙小,小颗粒成为非常密实的状态。与此相反,在图9所示的对比例中,粉末颗粒形状大体为球形,并且粉末颗粒和粉末颗粒之间的空隙大。此外,有很多空隙。

下面,表示用此电极进行堆积加工(放电表面处理)的结果。加工条件设为峰值电流ie=10A、放电持续时间(放电脉冲宽度)te=8μs左右。图10是表示以此条件加工时的堆积状态的照片。在此照片中,左侧的圆形所示区域表示进行5分钟加工形成的覆盖膜的状态,右侧的圆形所示区域表示进行3分钟加工形成的覆盖膜的状态。如此照片所示,覆盖膜表面材质均匀,没有观察到放电的集中或短路的情况,认为产生了稳定的放电。此外5分钟可以形成约1mm的覆盖膜。

在上述非球形的异形颗粒的粉末压缩体的情况下,得到了适度的颗粒间的结合,产生放电时,从电极提供的电极粉末量为最佳的量。如果提供最佳量的电极粉末,由于电弧柱的温度不降低,可以使工件上表面由电弧而熔融。由于电极粉末堆积在熔融的工件上,所以成为结合力强的覆盖膜。此外电极材料也在向工件的移动中充分熔融,由于以此状态堆积在工件上,所以在工件表面上形成的电弧坑接近平坦的状态。因而此平坦的电弧坑的重叠,而使形成的覆盖膜变得致密。

由此实施方式3,通过使用球磨机装置,可以便宜地得到用于制造硬度相同的电极所要求粒径的粉末。此外,电极粉末由于用球挤压打碎而分裂,所以可以得到非球形的鳞片状的粉末。此鳞片状粉末如图8所示,粉末的方向有方向趋于一致的倾向,所以电极中形成的空隙变小。因此电极成型时冲压压力传递到电极内部,可以制造有均匀硬度的致密的电极。此外由于电极是致密的,所以具有使形成的覆盖膜也致密的效果。

此外,在特开平5-116032号公报中,作为放电加工用石墨电极的制造方法,记载了对粘接剂和碳素原料的混合物,为了得到要求的粒径而使用喷射式粉碎机装置进行粉碎的技术。此粉碎是,当把粘接剂和碳素原料混合时,由于可以形成好似在面粉中掺入水那样的大块,所以分解此块,而得到要求的粒径。也就是说,此粉碎不是粉碎粉末,而是分解大的块。因此,与如此实施方式3所示,使粉末的形状改变,同时使粉末微细化的方式是不同的。

此外,特开平5-116032号公报是关于以抑制电极的消耗,去除工件为目的放电加工的发明,在使用上述方法制造的电极进行加工的情况下,工件被去除,不能如本实施方式3所示形成覆盖膜。

实施方式4.

在此实施方式4中,举出通过行星式球磨机把要求成分的粉末粉碎到小于或等于3μm的非球形粉末的情况的例子。

在图4所示的流程图的步骤S1的粉末粉碎工序中,通过行星式球磨机装置对平均粒径6μm的斯特莱特硬质合金粉末粉碎3小时,微细化到平均粒径3μm的粉末。此外,使用容积500cc的二氧化锆制的容器和φ2mm的二氧化锆制的粉碎用球。此外,斯特莱特硬质合金粉末使用与实施方式3相同的粉末。

在这里,行星式球磨机装置是使装入电极粉末、球和溶剂的容器旋转,并使放置此容器的台也旋转而进行粉碎的装置,粉末的粉碎力是振动式球磨机装置的5~10倍。但是,不适于大量处理粉末,适合少量的处理。

使用此行星式球磨机装置粉碎后的粉末的形状与实施方式3中由振动式球磨机装置得到的粉末相同,具有鳞片状。此外,使用此平均粒径3μm的鳞片状粉末制造的电极内部的状态,与上述实施方式3的图8相同。也就是说,用此粉末也可以制造与实施方式3相同的硬度没有波动的电极。所以,如果在与实施方式3相同的加工条件下进行3分钟的放电表面处理,可以得到稳定的放电,从而可以堆积0.1mm左右的厚覆盖膜。

由本实施方式4,通过使用行星式球磨机装置,可以得到用于制造硬度相同的电极所要求的粒径的粉末。此外,由此粉末制造的电极,在内部形成的空隙少,电极成型时冲压压力传递到电极内部,可以制造具有均匀硬度的致密的电极。此外,由于电极致密,所以具有使形成的覆盖膜也致密的效果。

实施方式5.

在此实施方式5中,举出了通过珠磨机把要求成分的粉末粉碎成小于或等于3μm的非球形粉末的情况的例子。

图11是示意表示珠磨机装置的粉碎原理的图。在粉碎容器201和转动体202之间装入约1.7kg的ZrO2制的直径φ1mm的球(珠子)210。在转动体202上安装有搅拌柱203,当使其旋转时,球210被搅拌。在此粉碎容器201中装入电极粉末。此外,电极粉末中混合丙酮或乙醇,作为浆装入到粉碎容器201中。在粉碎中粉末凝聚的情况下,最好以重量比1~5%装入分散剂。浆通过搅拌区域(下面称为粉碎区域)204时,球210和球210之间的电极粉末被打碎而微细化。浆通过粉碎区域204后,通过起滤纸作用的过滤网205,暂时流到粉碎容器201外部,但会再返回到粉碎容器201中而进行循环。使用此珠磨机装置200粉碎的粉末的形状与用实施方式3的振动式球磨机装置和实施方式4的行星式球磨机装置得到的粉末相同,具有鳞片状。

用这种珠磨机装置粉碎了与实施方式3相同的斯特莱特硬质合金粉末。此时,以10m/s的圆周速度使转动体旋转6小时。图12是表示粉碎6小时后的斯特莱特硬质合金粉末的粒度分布的图。在此图中,横轴是用对数刻度表示的粉末的粒径(μm),纵轴是表示以规定的基准对横轴所示的粒径划分的区间中存在的粉末的比例(右轴)和累积比例(左轴)。在此图中,条形曲线表示存在于横轴上各区间的粉末的比例,曲线L表示从粒径小的一侧把存在于各区间的粉末的比例累加后的累积比例。如此图所示,通过6小时的粉碎,可使斯特莱特硬质合金粉末的平均粒径降低到1μm。

由于珠磨机装置使小的球以高速冲击进行粉碎,粉碎力大于或者等于振动式球磨机装置的10倍。因此与图7对比可以看出,粒度分布与振动式球磨机装置的情况相比尖锐且窄。此外,如果使用具有这样尖锐的粒度分布的粉末制造电极,因为在相同放电条件下全部的粉末都熔融,所以可以进一步提高覆盖膜的致密性。

由本实施方式5,通过使用珠磨机装置,可以得到用于制造硬度一样的电极所要求粒径的粉末。此外,由此电极粉末制造的电极,在内部形成的空隙小,因此电极成型时冲压压力传递到电极内部,可以制造有均匀硬度的致密的电极。此外,由于粉末的粒度分布尖锐,所以电极变得致密,具有使形成的覆盖膜也更致密的效果。

实施方式6.

在此实施方式6中,举出了通过喷射式粉碎机装置把要求成分的粉末粉碎到小于或等于3μm的非球形粉末的情况的例子。

在这里,以使用喷射式粉碎机装置把平均粒径6.7μm的TiH2(氢化钛)粉末微细化的情况为例进行说明。

喷射式粉碎机装置是从对向的喷嘴以超音速或接近此速度喷射颗粒,通过颗粒之间相互碰撞把粉末微细化的装置。被粉碎的粉末的形状与用球磨机装置或振动式球磨机装置粉碎的粉末形状不同,不是变得扁平,而是变成具有多个角的多面体。

表3是表示喷射式粉碎机装置的粉碎条件的表。

表3

  喷嘴压力  5MPa  流体  氮气  装入量  2kg  处理时间  15hr

即,如这个表3所示,在氮气中进行TiH2粉末的粉碎,使喷嘴压力为5MPa,在相同条件下反复进行粉碎直至达到要求的平均粒径。粉碎前的粉末的平均粒径为6.7μm,但连续粉碎15小时后,平均粒径变成1.2μm。

使用通过这个喷射式粉碎机装置粉碎的粉末,施加规定的冲压压力后加热来制造电极。没有通过振动式球磨机装置或珠磨机装置得到的粉末形成的电极那样致密,但比由球形粉末形成的电极致密。此外,如果用此电极在与实施方式3相同的条件下进行放电表面处理,可以形成致密的覆盖膜。

由此实施方式6,通过使用喷射式粉碎机装置,可以得到用于制造硬度相同的电极所要求粒径的粉末。此外,与使用球形粉末的情况相比,可以制造具有均匀硬度的致密的电极。

实施方式7.

在此实施方式7中,对在通过磨机装置的粉碎过程中,磨机装置的容器和球的材质混入粉碎对象的原材料中的情况进行了研究。具体地说,研究了球磨机装置的容器和球的材质为Al2O3(氧化铝)的情况和为ZrO2的情况的球材质的混入状况。

在通过磨机装置粉碎粉末的情况下,在粉碎中有时容器和球的材料混入粉末中。如果通过EPMA(Electron Probe Micro Analyzer)对粉碎后的粉末中的Al和Zr的含量进行定量分析,在磨机装置的材质中使用氧化铝的情况下,Al含16wt%,而在磨机装置的材质中使用二氧化锆的情况下,Zr只含2wt%。这是因为二氧化锆在常温下的耐磨性高出氧化铝约10倍。即,如果把作为耐磨性高的材料的二氧化锆用于球磨机的容器和球,可以抑制容器的材质和球的材质混入粉末中。相反,想把球的材料混入到粉末中的情况下,通过把在常温下耐磨性低的材料用于球的材质上,可以使球的材质混入到电极粉末中。

因此,在一点不想把球的材料混入的情况下,可以将球磨机装置的容器和球用被粉碎的材料(也就是和粉末相同的材料)制造,或可以在球磨机装置的容器和球的表面涂敷与被粉碎的材料相同的材料。涂敷的方法可以例举的有堆焊、电镀或喷镀等。

由本实施方式7,通过在用磨机装置粉碎材料时,适当选择磨机装置的容器或球的材质,可以控制磨机装置的球材料等向电极材料中的混入。因此现有技术中数μm的不同材质的粉末均匀混合是困难的,但是由于在粉碎时可以一点一点把球或容器的材质(例如Al2O3或ZrO2)混合,所以可以与被粉碎的材料均匀混合。

实施方式8.

作为由本实施方式8的放电表面处理形成的厚膜所要求的功能,是具有高温环境下的耐磨性、润滑性等,且对象是可以转用于高温环境下也能使用的部件等的技术。作为具有这样功能的材料,知道的有Cr和Mo的氧化物。为了形成这样的厚膜,与如现有的放电表面处理那样以用于形成硬质陶瓷的陶瓷为主要成分的电极不同,使用把以金属成分为主要成分的粉末压缩成型,此后根据情况进行加热处理制造的电极。此外,为了通过放电表面处理形成厚膜,利用放电脉冲把大量电极材料提供给工件一侧,所以电极必须具有使电极的硬度低到一定程度、其硬度没有波动等与电极的材质或硬度等有关的规定的特征。

此外,在这里所谓的电极硬度波动主要是以下两个内容:(1)在制造电极的过程中,冲压时外围部分的粉末与金属模具的接触而受到强烈挤压,但由于不能把压力充分传递到内部,造成电极的外围部分变硬,内部变软的电极硬度波动(在电极外围部分和内部产生的硬度差);(2)在冲压的方向变长的情况下,由于压力不能传递到内部而产生的冲压方向的硬度波动。

所以在此实施方式8中,对可以消除电极制造过程中产生的电极硬度波动,便宜地制造致密的覆盖膜的放电表面处理用电极进行说明。

根据发明人的试验可以看出,在放电表面处理用电极的材料粉末粒径变大的情况和变小的情况中,对于电极成型有以下的事实。在粒径比3μm左右大的情况下,特别是比6μm左右还大的情况下,通过冲压使粉末成型时,外围部分的粉末与金属模具的接触而受到强烈挤压,压力不能充分传递到内部,电极的外围部分变硬而内部变软。与此相反,在粒径比3μm左右小的情况下,通过冲压使粉末成型时,难以引起如上述(1)那样的外围部分变硬的现象。

此外,在放电表面处理用电极的材料粉末粒径大的情况和小的情况中,对于覆盖膜的形成可以看出以下的事实。在使用通过粒径小的粉末成型的电极进行覆盖膜形成的情况下,由能量小的放电脉冲可以形成致密的覆盖模(相反,在使用通过粒径小的粉末成型的电极进行覆盖膜的形成的情况下,如果用能量大的放电脉冲进行覆盖模的形成,会产生覆盖膜中的空隙增加,覆盖膜内产生裂纹等问题)。此外,在使用通过粒径大的粉末成型的电极进行覆盖膜形成的情况下,如果不用能量大的放电脉冲就不能形成覆盖膜,如果用能量小的放电脉冲,粉末不充分熔融,只能形成易碎的覆盖膜。换句话说,通过能量大的放电脉冲可以形成覆盖膜,但由于颗粒大、放电脉冲的能量大,所以也存在覆盖膜内的空隙变多,覆盖膜内产生裂纹的问题。

综上所述,在致密覆盖膜形成中,希望使用以小粒径的粉末成型的电极,用能量比较小的放电脉冲进行覆盖膜的形成。

可是,一般球形粉末通过雾化法等方法制造,而雾化法大多制造数10μm左右的粉末,需要小于或等于10μm的粉末的情况下,大多把通过雾化法制造的粉末进行分级得到。比这更小的粒径,例如制造小于或等于2μm或3μm左右的粉末,除了Co等必需的材料以外,从成本方面考虑,用粉碎数10μm左右的粉末来得到是现实的。

在这里,粉碎制造的小粒径的粉末成为非球形的扁平状,存在有在释放冲压的压力时,作为成型体的粉末压缩体膨胀的现象变得更大的问题。这是由于压缩成型时成球形的粉末流动性好,容易压缩。此外,因为把粉末成型的粉末压缩体的膨胀量难于管理,所以出现每次将粉末成型都得到不同性质的电极,而成为质量管理上的大问题。因此为了对电极质量,进而对形成的覆盖膜的质量进行管理,必须使电极的膨胀量相同,或使电极的膨胀消失,或变小到可以管理电极的膨胀量的范围。

汇总上述的问题,在形成致密覆盖膜中,优选的是使用通过小粒径的粉末成型的电极,以能量比较小的放电脉冲进行覆盖膜的形成,但在粉末粒径小的情况下,特别是通过粉碎制造小粒径的粉末的情况下,用冲压制造规定形状的电极是困难的,必须有相应对策。

下面对即使在粉末的粒径小的情况下,也可以通过冲压制造规定形状的电极的方法进行说明。图13为示意表示此实施方式8的电极材料结构的图,与图5相同,示意表示粉末被装入成型器内被压缩的状态。此外,与图5相同的结构要素采用相同的标号而省略其说明。在此实施方式8中,如图13所示,其特征为,作为电极材料的粉末,使用把具有小的粒径分布的小粒径粉末112和平均粒径大于或等于小粒径粉末112的2倍的大粒径粉末111混合后的粉末,或使用把平均粒径小于或等于3μm的小粒径粉末112和平均粒径大于或等于5μm的大粒径粉末111混合后的粉末。此外,在下面的说明中例举了使用将粒径6μm左右的大粒径的粉末111和粒径1μm左右的小粒径粉末112混合后的粉末的情况。对此大粒径粉末111和小粒径粉末112的作用进行说明,小粒径粉末112是用于形成覆盖膜的电极的主要成分,大粒径粉末111是用于使粉末的压缩性能提高,稳定地进行电极成型的辅助添加的粉末,但它也变成覆盖膜。

在这里,成为电极材料的大粒径粉末111和小粒径粉末112都是含Cr、Ni、W等的Co基合金。除此之外为了形成厚膜,还可以使用例如Co合金、Ni合金、Fe合金等。此外,大粒径粉末111和小粒径粉末112可以是相同的材料,也可以是不同的材料,但为了形成以规定合金材料为基础的覆盖膜,优选的是相同的合金材料。

对大粒径粉末111和小粒径粉末112进行进一步的说明,大粒径粉末111是把通过雾化法制造的粉末进行分级后选出的6μm左右的粒径的粉末,具有大体为球形的形状。另一方面,小粒径粉末112是使用把与通过雾化法制造的与大粒径粉末111相同成分的粉末粉碎后,得到的平均粒径为大约1~2μm的粉末。

使用这些粉末的电极制造方法由于与在实施方式1的图4的流程图中说明的方法相同,省略其说明。如上所述,仅用小粒径粉末112,如果冲压后释放压力则作为成型体的粉末压缩体会膨胀,但通过在小粒径粉末112中混合作成球形的大粒径粉末111,提高粉末的流动性,冲压的压力均匀地在电极(成型体)中传递,压力释放后的电极的膨胀几乎消失。

此外,从试验结果判断,大粒径粉末111的比例可以为体积%的5~60%左右。从覆盖膜的致密性方面看,更优选的是5%~20%左右。如果大粒径粉末111的比例过少,则电极的膨胀不能消失,如果混合大于或等于5%的大粒径粉末111,则电极没有较大的膨胀。但是,如果大粒径粉末111变多,在能量小的放电脉冲的条件下,覆盖膜的形成变得困难,用大能量的放电脉冲,就产生覆盖膜的表面粗糙度下降的问题。因此,优选尽可能减少大粒径粉末111的比例。

在大粒径粉末111小于或等于20%的少量的情况下,在放电脉冲宽度短、峰值电流低的条件下,可以形成致密的覆盖膜。此时的放电脉冲条件为放电脉冲宽度te是10μs、峰值电流ie是10A左右,但只要放电脉冲宽度te小于或等于70μs、峰值电流ie小于或等于30A,就可以形成致密的覆盖膜。

作为粉末材料,在含有容易形成碳化物的材料的情况下,如果通过放电以完全熔融的状态把电极材料提供给工件一侧,则形成碳化物而使厚膜的形成变得困难。所以,例如作为粉末材料含有粒径0.7μm的Mo粉末的情况下,由于Mo是容易形成碳化物的材料,所以使用放电脉冲宽度te在大于或者等于60μs的比较长的条件,通过放电脉冲把没有完全熔融的材料提供给工件,对于形成致密的覆盖膜是有效的。

图14A~图14E是表示由电极中大粒径粉末的比例和放电能量的大小不同,覆盖膜的剖面状态的SEM照片。图14A是使用大粒径粉末的比例为10%的电极,在峰值电流ie=10A、脉冲宽度te=8μs的放电脉冲条件下进行放电表面处理的情况;图14B是使用大粒径粉末的比例为50%的电极,在峰值电流ie=10A、脉冲宽度te=8μs的放电脉冲条件下进行放电表面处理的情况;图14C是使用大粒径粉末的比例为50%的电极,在峰值电流ie=10A、脉冲宽度te=64μs的放电脉冲条件下进行放电表面处理的情况;图14D是使用大粒径粉末的比例为80%的电极,在峰值电流ie=10A、脉冲宽度te=8μs的放电脉冲条件下进行放电表面处理的情况;图14E是使用大粒径粉末的比例为80%的电极,在峰值电流ie=10A、脉冲宽度te=64μs的放电脉冲条件下进行放电表面处理的情况。此外在图14A中的放大倍数为100倍,第14B~图14E中的放大倍数为500倍。

在这些图中,覆盖膜的厚度各不相同是因为处理时间不同,与覆盖膜的状态本身无关,薄的膜如果延长处理时间也可以增厚。在必须进行膜厚管理的情况下,可以通过处理时间进行管理,也可以通过放电脉冲数进行管理。因为如果是具有同样的电流波形,即,具有相同的脉冲宽度te和相同峰值电流ie的放电脉冲的话,通过放电脉冲可以形成的膜的体积是大致相同的,所以通过放电脉冲的数量来控制覆盖膜厚度是有效的。如果用放电脉冲的数量进行覆盖膜的控制,管理变得非常容易,例如也可以通过网络把信息发送给放电表面处理装置而进行远程管理。

对图14A~图14E研究后发现,如果大粒径粉末的比例少,则在放电脉冲的能量小的条件下,可以形成致密的覆盖膜(图14A、图14B),而随大粒径粉末的比例增加,覆盖膜内空隙增加(图14D)。此外,可以看出,即使在大粒径粉末的比例多的情况下,如果使放电脉冲的能量增加,则向工件转移的电极材料熔融,但由于在一个放电脉冲中,更多的电极材料熔融,变成空隙大的覆盖膜(图14E)。这一点,即使在大粒径粉末的比例少的情况下也能看到相同的现象(图14C)。从以上可以看出,优选使用大粒径粉末的比例少的电极,以能量小的放电脉冲条件进行覆盖膜的形成。由此,大粒径粉末的比例的上限值在50~80体积%之间。

图15是表示大粒径粉末的比例和覆盖膜的致密度之间的关系的曲线。在此图中横轴表示大粒径粉末占电极体积的体积%,纵轴表示通过横轴所示的电极进行放电表面处理时形成的覆盖膜中的空隙的比例。此外,曲线E是脉冲条件大时的评价,曲线F是脉冲条件小时的评价。在这里,所谓脉冲条件“小”是指在峰值电流ie=10A、脉冲宽度te=8μs的放电脉冲条件下进行放电表面处理的情况,所谓脉冲条件“大”是指在峰值电流ie=10A、脉冲宽度te=64μs的放电脉冲条件下进行放电表面处理的情况。

从图15看出,对于覆盖膜的致密性,如果大粒径粉末多于60%,则致密性恶化,成为空隙多的覆盖膜。特别是如果在能量大的脉冲条件下进行处理,即使大粒径粉末的比例少,覆盖膜中的空隙也变多。但是,在能量小的脉冲条件下进行处理的情况下,如果大粒径粉末的比例少于60%,则覆盖膜的空隙减少,可以形成致密的膜。特别是在大粒径粉末的比例小于或等于20%的情况下,覆盖膜中的空隙变得非常少。

图16是表示大粒径粉末的比例和电极的成型性之间的关系的曲线。在此图中,横轴表示大粒径粉末占电极体积的体积%,纵轴表示电极成型性的好坏,越向纵轴的上方表示电极的成型性越好。从此图16可以看出,如果大粒径粉末多于约80%,则通过冲压均匀地将电极成型变得困难,容易变成电极的外侧硬,内侧软的状态。相反,如果大粒径粉末过少(小于或等于约5%),冲压时把压力去除时的电极的膨胀变大,难以使质量稳定。

通过这些图15和图16,大粒径粉末的比例可以为5%~60%,更优选的是5%~20%左右。但是此比例也受到作为主要成分的小粒径粉末的形状的影响。也就是说,如果小粒径粉末为近似球形,需要的大粒径粉末的比例即使少也可以。此外,对于通过把具有小的粒径分布的小粒径粉末112和平均粒径大于或等于小粒径粉末112的2倍的大粒径粉末111混合后的粉末制造的电极,或通过把平均粒径小于或等于3μm的小粒径粉末112和平均粒径大于或等于5μm的大粒径粉末111混合后的粉末制造的电极,也能同样能得到这样的结果。

此外,作为把粒径不同的粉末混合后压缩,形成成型体的现有的发明,有特开平5-148615号公报和特开平8-300227号公报。但是,这些发明是以形成陶瓷类的覆盖膜为目的,使覆盖膜的主要成分的陶瓷为小粒径粉末,使作为粘接剂使用的金属粉为大粒径。其原因是一般金属粉难以得到小粒径的粉末,与本发明的内容是不同的。即,在特开平5-148615号公报和特开平8-300227号公报所述的发明没有表现出以下观点,即,使电极具有管理粒径所必要的性质。

此外,在特公平7-4696号公报中也记载有把粒径不同的粉末混合后成型的要点,但是是用于此后对表面电镀而放电加工(把工件雕刻成规定形状的加工)的电极,与本发明是不同的。

如上所述,由本实施方式8,因为把体积比例5%~60%的大粒径粉末混合在小粒径粉末中,制造放电表面处理用电极,所以可以得到将粉末冲压后释放压力以后,粉末压缩体不膨胀,且硬度均匀的电极。其结果,具有容易对电极进行管理的效果,同时如果通过这样的电极进行放电表面处理,还具有可以在工件表面上无波动地形成致密的厚膜的效果。

此外,在此实施方式8中,对以另外途径制备粒径不同的粉末后混合的方法进行了说明,但也可以通过把粒径大的粉末(例如粒径6μm的粉末)粉碎的方法,使粒径不同的粉末成为混合的状态。例如在使用二氧化锆球,通过球磨机装置粉碎粉末的情况下,如果通过φ15mm的球粉碎6μm的粉末,则变成以2μm为分布中心的粉末和以6μm为分布中心的粉末混合的状态。这是因为球磨机不能均等地粉碎粉末,但结果成为小粒径粉末和大粒径粉末混合的状态,通过使用此粉末可以得到在上述实施方式8中所述相同的效果。但是由于通过粉碎对粉末分布的再现容易产生误差,所以应限定于在可以容许误差的范围内的使用。

实施方式9.

如上述实施方式所述,作为用于使以金属成分为主要成分的电极硬度均匀的方法,可以使作为电极成分使用的粉末的粒径小于或等于3μm,或可以在作为电极成分使用的粉末中混合规定量的粒径小于或等于3μm的粉末。这是因为在通过冲压使粉末成为粉末压缩体时,在粒径大的情况下,例如在6μm左右的情况下,粉末压缩体的外围部分受到金属模具强的挤压、摩擦而变硬,与此相反,如果粉末粒径小就不会产生这样的现象。

此外,通过使作为电极成分使用的粉末粒径小于或等于3μm,或在作为电极成分使用的粉末中混合规定量的粒径小于或等于3μm的粉末,可以控制电极的硬度波动,从而可以控制形成的覆盖膜的波动,但存在有在覆盖膜中有大量空隙的问题。

图17是表示使用由粒径6μm和1μm的Co基的金属粉末以4∶1混合的粉末制造的电极进行放电表面处理,形成的覆盖膜的剖面状态的SEM照片。如在此照片右侧补充表示的那样,照片下侧是母材的工件,在它的上侧形成覆盖膜。如图17所示,覆盖膜形成于工件上,但空隙多,其比例为10%左右。因此,不能说用上述的电极可以形成足够致密的厚膜。此外,发明人通过试验发现,在粒径大的情况下,无论如何改变加工条件等,都不能达到大于或者等于一定程度的致密。

此外,在下面的实施方式9、10中,设想以形成以金属或合金为主要成分的覆盖膜或厚膜为主要目的,电极也使用以金属或合金为主要成分的材料的情况。但是,为了形成金属的覆盖膜,未必电极材料就是金属本身的情况,例如,也可能是金属的氢化物那样的金属的化合物,但在材料加热形成覆盖膜时,也可以使用与金属处于同样状态的金属化合物。

在此实施方式9中,对使粉末的平均粒径小于或等于1μm制造放电表面处理用电极的情况进行说明。在这里,使用平均粒径小于或等于1μm的Co粉末,按实施方式1的图4所示的流程图制造放电表面处理用电极。

如实施方式8说明的那样,为了通过放电表面处理形成致密的覆盖膜,优选的是使用由小粒径的粉末成型的电极,以能量比较小的放电脉冲进行覆盖膜成型。在这里,在电极和工件之间施加的放电脉冲为图3A和图3B所示的放电脉冲。图3A和图3B是电流脉冲大体为矩形波的情况的图,当然用其他波形的情况下也可以同样论述。如此图3B所示,在电流脉冲为矩形波的情况下,放电脉冲的能量大体可以用放电脉冲宽度te和峰值电流ie的乘积进行比较。

此外,发明人用试验明确了,根据电极成分的粉末粒径,形成的覆盖膜的空隙率,即,在覆盖膜中材料没有填充的部分的比例有极限值。图18是表示构成电极的粉末粒径和覆盖膜的空隙率的关系的曲线。在此图中,横轴表示构成电极的粉末的粒径(μm),纵轴表示通过由具有横轴的粒径的粉末构成的电极形成的覆盖膜中的空隙率。由电极构成的要素,例如粉末的粒径和粉末的材质等不同,可以形成最致密的覆盖膜的放电条件也不同,但大体上如图18所示,电极的粒径和覆盖膜的空隙率之间的关系为,随粒径变小空隙率减少的关系。

其中可以看出,从粒径小于或等于1μm时开始,覆盖膜的致密度增加,可以形成几乎没有空隙的覆盖膜。认为这是由于当粒径变小时,用能量小的放电脉冲可以使材料充分熔融,电极材料变成小的熔融的金属颗粒后到达工件上,所以可以成为空隙少的堆积。

图19是表示通过使用由粒径0.7μm的Co系合金粉末制造的电极进行放电表面处理,形成的覆盖膜的剖面状态的SEM照片。此Co系合金是含有Cr、Ni、W等的Co基合金。此外,此时的放电脉冲条件使用放电脉冲宽度te为8μs、峰值电流ie为10A这一能量比较小的条件。如此图19所示,在工件上形成的覆盖膜几乎没有空隙。在图19中用Co合金的电极形成覆盖膜,用Co粉末构成的电极也能得到同样的结果。

此外如果使用同一电极,通过能量大的脉冲,例如放电脉冲宽度te为60μs左右的条件进行放电表面处理,则由于放电能量变大(约7.5倍),所以空隙率变大。因此确认了即使用同一个电极,根据放电脉冲的条件不同空隙率也不同。

此外,根据试验确认了,在由小于或等于1μm的Co粉末构成的电极的情况下,放电脉冲的条件可以是放电脉冲宽度te小于或等于20μs、峰值电流ie小于或等于30A,优选的是放电脉冲宽度te为10μs左右、峰值电流ie为10A左右。如果大于这样的放电脉冲条件,则覆盖膜中的空隙增加,或裂纹增加,这是所不希望的。

象上述那样通过使粉末的平均粒径小于或等于1μm,可以形成致密的覆盖膜,但不必要满足全部粉末都小于或者等于1μm。混入粒径大于或等于此粒径2倍的粉末,例如到20%左右,在形成致密的覆盖膜方面也没有问题。相反可以看出,通过混入少量的粒径大的粉末,能解决以下问题。即,当对小于或等于1μm的微细粉末进行压缩成型,在释放冲压压力时,作为成型体的电极体积会膨胀变大。可是通过混入少量的大粒径粉末,可以抑制此体积的膨胀。但是,因为如果大粒径过多,会发生覆盖膜的致密性的问题,所以混入的大粒径粉末的比例优选的是体积的20%左右。即,小于或等于1μm的粉末大于或等于80%左右是必要的。

由本实施方式9,通过使用由平均粒径小于或等于1μm的金属或合金的粉末制造的粉末压缩体作为电极进行放电表面处理,可以增加形成的厚膜的致密度,具有可以形成几乎不存在空隙的覆盖膜的效果。所以这样形成的覆盖膜非常坚固。

实施方式10.

如上所述,在本发明中,使用由以金属成分为主要成分的材料制造的电极,通过脉冲放电进行厚膜的形成。但是,发明人根据试验发现,在以油作为加工液的情况下,如果电极中含有大量容易形成碳化物的材料,则会与油中的碳反应变成碳化物,使形成厚膜变得困难。所以,在通过使用数μm左右的粉末制造的电极形成覆盖膜的情况下,通过使电极中含有Co、Ni、Fe等难形成碳化物的材料,可以形成致密的厚膜。

但是,可以看出,如果使在电极中使用的粉末的粒径小到小于或等于大约1μm,则即使使用仅由容易形成碳化物的金属,例如Mo粉末构成的电极,也能形成厚膜。此时的脉冲条件是放电脉冲宽度te为8μs,峰值电流ie为10A这一能量比较小的条件。通过X射线衍射分析覆盖膜的结果可以看出,在使用作为对比例试验的由4μm左右大粒径Mo粉末构成的电极形成的覆盖膜中,几乎全是碳化钼而不含金属钼,与之相反,在使用由粒径小的Mo粉末(0.7μm)构成的电极形成的覆盖膜中,大量含有金属状态的钼。

如上所述确认了,为了形成厚膜,在覆盖膜中含有不变成碳化物等的金属状态的成分是必要的,而通过减小粒径,即使用容易变成碳化物的金属,也可以以不碳化的状态变成覆盖膜。其原因尚不完全清楚,但认为这或许是由于通过减小粒径,用于形成致密覆盖膜的放电脉冲的能量变小,以此小能量不足以使电极材料碳化,所以电极的材料不碳化而变成覆盖膜。

在此实施方式10中对钼的情况进行了叙述,同样用Cr、W、Zr(锆)、Ta(钽)、Ti、V(钒)、Nb(铌)等金属也能得到同样的结果。但是,Ti与其他金属相比是非常容易碳化的材料,与其他金属相比难以形成厚膜。此外,由于微细粉末容易氧化,所以易氧化的金属,特别是Cr、Ti在把电极成型前预先把粉末缓慢氧化是必要的。因为如使用没有氧化的粉末,会产生因急剧氧化而产生缺陷。

由本实施方式10,即使是容易碳化的金属,通过使粒径小于或等于1μm,在规定的加工条件下进行表面放电处理,具有减少电极材料被碳化的比例,可以形成致密的厚膜的效果。因此可以使形成厚膜的范围变宽,不限定于以Co、Ni、Fe等为基础的金属,都可以形成致密的厚膜。

如以上说明,由本发明,因为用平均粒径小于或等于3μm的粉末制造电极,所以可以制造硬度没有波动的电极。此外,可以形成在高温环境下发挥润滑性的覆盖膜等的均匀厚膜。此外,由于即使在微细粉末的量少的情况下,也可以形成没有硬度波动的电极,所以可以使电极的成本降低。

此外,由本发明,可以用各种各样的材料制造适用于放电表面处理的电极粉末,通过由此电极粉末制造的电极可以稳定地放电。此外,通过使用此电极进行放电表面处理,可以形成各种各样材质的覆盖膜。此外,由本发明,可以形成具有均匀的组成并且均匀的覆盖膜。

此外,通过使用以下放电表面处理用电极进行放电表面处理,可以形成均匀的致密的厚膜,该电极是用平均粒径为1μm的粉末制造的。

工业实用性

如上所述,本发明适用于可以使在工件表面上形成厚的覆盖膜的处理自动化的放电表面处理装置。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号