首页> 中国专利> 双固化可B-阶段的模头附着用粘合剂

双固化可B-阶段的模头附着用粘合剂

摘要

可固化组合物,包含两种有足够分开的固化温度的可分开固化化学组合或组合物,以致一种化学组合物可以在B-阶段过程期间充分固化,而第二种化学组合物可以保持不固化直至希望最终固化例如半导体芯片对基板的最终附着。

著录项

  • 公开/公告号CN1602343A

    专利类型发明专利

  • 公开/公告日2005-03-30

    原文格式PDF

  • 申请/专利权人 国家淀粉及化学投资控股公司;

    申请/专利号CN02824886.4

  • 发明设计人 K·H·贝克;H·R·库德尔;

    申请日2002-11-18

  • 分类号C09J163/00;C09J201/00;C08J3/24;C09J5/06;H01L21/58;

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人刘元金;马崇德

  • 地址 美国特拉华州

  • 入库时间 2023-12-17 16:00:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-12-06

    专利权有效期届满 IPC(主分类):C09J 163/00 专利号:ZL028248864 申请日:20021118 授权公告日:20070124

    专利权的终止

  • 2011-06-08

    专利权人的姓名或者名称、地址的变更 IPC(主分类):C09J163/00 变更前: 变更后: 申请日:20021118

    专利权人的姓名或者名称、地址的变更

  • 2011-06-08

    专利权的转移 IPC(主分类):C09J163/00 变更前: 变更后: 登记生效日:20110427 申请日:20021118

    专利申请权、专利权的转移

  • 2007-01-24

    授权

    授权

  • 2005-06-01

    实质审查的生效

    实质审查的生效

  • 2005-03-30

    公开

    公开

查看全部

说明书

                   技术领域

本发明涉及适合用于使半导体芯片附着到基板上的可B-阶段组合物。该组合物含有两种分开固化的化学组成。

                  背景技术

在一种半导体封装类型中,半导体模头或芯片是电连接而且用粘合剂机械粘合到基板上的。该基板又连接到其它电子器件或外部电源上。这种制作可以在一系列连续步骤中进行,或者该基板可以用机械附着用粘合剂制备然后保持直至稍后时间。

当该制作以一系列连续步骤进行时,将该粘合剂沉积到该基板上,使半导体芯片与该粘合剂接触,并通过加热或加热与加压使该粘合剂固化。适用粘合剂可以是要么无溶剂液体和糊状物、要么固体。如果呈液体或糊状物形式,则该粘合剂通过加热既会固化也会凝固。

如果该制作过程要在该粘合剂沉积到该基板上之后中断并将最终组件保持到稍后时间,则该粘合剂必须呈可成功贮存的凝固形式。固体粘合剂提供下列进一步优点:很少或没有渗色,以及胶层厚度和胶层倾斜度的较好控制,胶层就是芯片与粘合剂之间的界面。

对于一些半导体封装应用来说,由于工艺原因,糊状粘合剂优于薄膜粘合剂,不过胶层和固体的圆角控制是所希望的。在这样一种情况下,可以使用已知为可B-阶段(B-stageable)粘合剂的粘合剂。如果起始粘合剂材料是一种固体,则将该固体分散或溶解于一种溶剂中形成一种糊状物并将该糊状物施用到基板上。然后加热该粘合剂使溶剂蒸发,将一种固态但未固化的粘合剂留在该基板上。如果起始粘合剂材料是一种液体或糊状物,则将该粘合剂分配到该基板上并加热以使该粘合剂部分地固化成固态。这个制作阶段热的施加就称B-阶段(B-staging),该粘合剂称为可B-阶段粘合剂(B-stageable)。

尽管以上提到的固体粘合剂有优点,但也有缺点,在B-阶段后和贮存期间,固体粘合剂在环境条件下容易吸收空气中的水分,或者从基板、尤其有机基板例如BT树脂、印刷电路板或聚酰亚胺可挠曲基板上吸收水分。该粘合剂也可能含有一定水平的残留溶剂或挥发物。

在高附着温度下,所吸收的水分和残留挥发性物质会迅速蒸发。如果这种蒸发发生得太快以致蒸气无法从粘合剂中扩散出去,则粘合剂中会出现空洞或气泡,这会成为粘合剂最终破裂的根源。这造成了对可B-阶段但不促进空洞化的可固化组合物的需要。

                   发明内容

本发明是一种包含两种化学组合物的粘合剂,所述两种化学组合物有足够分开的固化温度或固化温度范围,使得固化温度较低的组合物(以下称第一组合物)能固化而固化温度较高的组合物(以下称第二组合物)不固化。实际上,第一组合物会在B-阶段过程期间固化,而第二组合物会保持不固化直至希望最终固化例如半导体芯片对基板的最终附着。完全固化材料是交联或聚合到足以有效地给它以结构完整性的高分子量的。

                  具体实施方式

第一和第二组合物每一种都是能共反应以聚合或交联的一种或多种单体的、一种或多种低聚物的、或一种或多种聚合物的化合物或树脂、或这些的组合。聚合和交联两者都称为固化。该组合物,除单体种、低聚物种、或聚合物种外、一般都会含有固化剂或固化抑制剂、任选地可以含有溶剂。在本说明书和权利要求书内,第一组合物和第二组合物的组合称为总可B-阶段粘合剂。

第一组合物包含一种液体、或一种溶解或分散于溶剂中的固体。第二组合物是一种室温下固体或半固体材料,而且可分散或可溶解于液态第一组合物中或者与第一组合物相同或可兼容溶剂中。第一和第二组合物的选择将部分地决定于进行半导体芯片与其基板的最终连接的温度。

例如,若最终连接用锡-铅易熔焊剂进行时,则焊剂熔融和互连发生于183℃的温度。粘合剂的最终固化应当在焊剂块流动和互连之后迅速发生,而且可以在焊剂再流动温度或更高温度发生。因此,在这种情况下,第二组合物要选择得具有接近于或在183℃或稍高的固化温度。如果使用聚合物互连材料,则第二组合物要选择得具有等于或接近于聚合物互连固化温度的固化温度。如果金属丝粘合是最终附着方法,则第二组合物要选择得具有等于或接近于金属丝粘合温度的固化温度。

第一组合物选择得使其能在第二组合物的固化温度之前以及在进行芯片与基板的最终互连的温度之前固化。第一组合物和第二组合物的固化温度可以间隔任何能有效提供两种各异固化形象的数量,使得第二组合物在第一组合物的固化温度或固化温度范围内不固化。第二组合物在B-阶段过程期间的不显著固化是可容许的。在一种较好实施方案中,第一组合物和第二组合物的固化温度间隔至少30℃。

典型地说,B-阶段加热即第一组合物固化在约100℃~约150℃范围内的温度发生。所使用的任何温度应选择得能在与第一组合物固化相同的温度范围内蒸发掉。B-阶段过程期间第一组合物固化和溶剂蒸发将使总粘合剂组合物凝固和抑制最终附着过程期间的空洞化,因为作为固体它会达到足够高的模量或熔体粘度来限制胶层和防止该粘合剂内蒸气相的膨胀。固化之后,第一组合物必须能在半导体芯片的最终附着温度增粘或软化。所得到的固化材料可以是一种线型、稍微枝化、或轻微交联的聚合物。

当加热到半导体模头的适当附着温度时,总粘合剂组合物应当充分熔融和流动,从而使基板表面完全润湿。高效率润湿导致良好粘合。

固化过程,对于B-阶段第一固化来说,可以通过(例如用紫外线)照射来引发和推进,然后对于最终固化来说通过加热来引发和推进,或者B-阶段固化和最终固化都可以通过加热来引发和推进。

第一和第二组合物将以5∶95~95∶5的摩尔比存在,这可以由实践者为特定终端用途确定。总可B-阶段粘合剂的第一组合物和第二组合物的组合包括:

第一:有自由基固化剂的可热固化丙烯酸化合物,例如可购自Sartomer公司的那些。第二:有潜在胺或咪唑固化剂的可热固化环氧化合物或树脂,例如可购自Nalional Starch、CIBA、住友或大日本公司的那些。

第一:有光引发剂的可辐射固化环脂族环氧化合物,例如CIBACY179。第二:有苯酚类硬化剂和膦系固化剂的可热固化芳香族环氧化合物,例如双酚A二环氧化物。

第一:有光引发剂的可辐射固化丙烯酸化合物,例如可购自Sartomer公司的那些。第二:有潜在胺或咪唑固化剂的可热固化环氧化合物,例如可购自National Starch、CIBA、住友或大日本公司的那些。

第一:热引发、可自由基固化的联马来酰亚胺化合物(电子受体),例如可购自Ciba Specialty Chemicals或National Starch公司的那些,与(电子供体)乙烯基醚类、乙烯基甲硅烷类、苯乙烯化合物类、肉桂基化合物类。第二:有潜在胺或咪唑固化剂的可热固化环氧化合物,例如可购自National Starch、CIBA、住友或大日本公司的那些。

除以上提到的环氧化物外,适用环氧树脂的进一步实例包括双酚A和双酚F的单官能和多官能缩水甘油醚、脂肪族和芳香族环氧、饱和的和不饱和的环氧、环脂族环氧树脂、和这些的组合。双酚A型树脂可作为EPON 828购自Resolution Technology公司。双酚F环氧树脂可以通过1mol双酚F树脂与2mol表氯醇的反应制备。双酚F型树脂也可以在8230E名称下购自CVC Specialty Chemicals公司(美国新泽西州马普塞德)和在RSL 1739名下购自ResolutionPerformance Products LLC公司。双酚A和双酚F的共混物可在ZX-1059名下购自日本化学公司。

另一种适用环氧树脂是环氧可溶可熔酚醛树脂,是通过苯酚树脂与表氯醇的反应制备的。一种较好的环氧可溶可熔酚醛树脂是聚(苯基缩水甘油基醚)共甲醛。其它适用环氧树脂是联苯环氧树脂,通常通过联苯树脂与表氯醇的反应制备;二聚环戊二烯-苯酚环氧树脂;萘树脂;环氧功能的丁二烯-丙烯腈共聚物;环氧官能的聚二甲基硅氧烷;和以上的混合物。

非缩水甘油基醚环氧化物也可以使用。适用的实例包括3,4-环氧环己烷羧酸3,4-环氧环己基甲酯,含有分属于环结构部分和酯键的两个环氧基;二氧化乙烯基环己烯,含有2个环氧基且其中之一是环结构的一部分;3,4-环氧环己烷羧酸3,4-环氧-6-甲基环己基甲酯;和二氧化二聚环戊二烯。

适用环氧的进一步实例包括:

适用于环氧化物的咪唑催化剂,除市售品外,是一种咪唑-酐加合物。用于生成该加合物的较好咪唑包括没有N-取代的咪唑类,例如2-苯基-4-甲基咪唑、2-苯基咪唑、和咪唑。该加合物的其它可用咪唑成分包括有烷基取代的咪唑、有N-取代的咪唑、和这些的混合物。

用于生成该加合物的较好酐是环脂族酐,例如可作为PMDA购自Aldrich公司的均苯四酸二酐。其它适用酐包括甲基六氢邻苯二甲酸酐(可作为MHHPA购自Lonza公司中间体与活性物分公司)、甲基四氢邻苯二甲酸酐、4-降冰片烯-1,2-二羧酸甲基酸酐、六氢邻苯二甲酸酐、四氢邻苯二甲酸酐、邻苯二甲酸酐、十二烷基琥珀酸酐、联苯二酐、二苯酮四羧酸二酐、和这些的混合物。

两种较好的加合物是1份1,2,4,5-苯四羧酐和4份2-苯基-4-甲基咪唑的复合物、以及1份1,2,4,5-苯四羧酸二酐和2份2-苯基-4-甲基咪唑。该加合物是通过把这些成分在加热下溶解于一种适用溶剂例如丙酮中制备的。当冷却时,该加合物沉淀出来。这样的加合物是以任何有效量使用的,但较好以该组合物中有机材料的1~20wt%的数量存在。

适合于与马来酰亚胺一起使用的肉桂基供体的实例包括:

其中C36代表从亚油酸和油酸衍生的36个碳的线型或枝化烷基。

适合于与马来酰亚胺一起使用的苯乙烯供体的实例包括:

式中C36代表从亚油酸和油酸衍生的36个碳的线型或枝化烷基。

固化剂例如自由基引发剂、热引发剂和光引发剂将以能使该组合物固化的有效量存在。一般来说,这些数量的范围将是该组合物中总有机材料(即不包括任何无机填料)的0.1~30wt%、较好1~20wt%。实际固化形象将随成分变化,而且实践者无需过多实验就能确定。

该可固化组合物可以包含非导电性或者导热性或导电性填料。适用非导电性填料是下列材料的微粒:蛭石、云母、硅灰石、碳酸钙、氧化钛、砂、熔凝硅石、热解法二氧化硅、硫酸钡、和卤代乙烯例如四氟乙烯、三氟乙烯、偏二氟乙烯、氟乙烯、偏二氯乙烯、和氯乙烯的聚合物。适用的导电性填料是碳黑、石墨、金、银、铜、铂、钯、镍、铝、碳化硅、钻石、和氧化铝。当使用时,填料一般将以该配方的可多达98wt%的数量存在。

溶剂可以用来改变该组合物的粘度,而且当使用时应当选择得使其能在B-阶段加热期间蒸发。典型地说,B-阶段加热将在约150℃以下的温度发生。可以利用的溶剂的实例包括酮类、酯类、醇类、醚类、及其它稳定的而且能溶解该组合物成分的常用溶剂。较好的溶剂包括γ-丁内酯、乙酸卡必醇酯、丙酮、甲基乙基酮、和乙基乙酸丙二醇甲醚酯。

在另一种实施方案中,本发明是一种使半导体芯片附着到基板上的方法,包含在该基板上沉积一种可B-阶段的可固化组合物,包含如上所述有较低固化温度的第一组合物和如上所述有效高固化温度的第二组合物;将该基板和粘合剂加热到第一组合物的固化温度以使该组合物固化;使该粘合剂与一种半导体芯片接触;将该基板、粘合剂、和半导体芯片加热到第二组合物的固化温度以使该组合物固化。

在一种进一步实施方案中,本发明是一种组件,包含一种半导体芯片或模头用基板和一种沉积在该基板上的可B-阶段粘合剂,该可B-阶段粘合剂包含如上所述有较低固化温度的第一组合物和如上所述有较高固化温度的第二组合物,其特征在于第一组合物已经充分固化。

                       实施例

制备一种有一种化学组成的可固化对照配方,包含一种双酚A环氧、一种弹性体、一种苯酚类硬化剂、作为催化剂的三苯膦、和作为溶剂的乙酸卡必醇酯。

以约1∶10的重量比制备两种可固化的本发明配方—配方A和配方B-且均有第一组合物包含一种马来酰亚胺、第二组合物包含该对照配方的环氧组成。配方A的马来酰亚胺组合物包含一种联马来酰亚胺、一种单马来酰亚胺、一种有以下结构的双官能供体

和一种过氧化物催化剂。配方B的马来酰亚胺组合物包含一种联马来酰亚胺、以上所示双官能供体、和一种过氧化物催化剂。

对照配方、配方A和配方B使用一种以3℃/min从25℃升温至300℃的流变性MK IV力学热分析仪测试动态拉伸模量。结果报告于下表中,并显示出该双固化配方和B有比对照配方优异的高温模量。

动态拉伸模量  对照    配方A    配方B25℃    1164Mpa    953Mpa    1080Mpa150℃    3.6Mpa    19.6Mpa    53.0Mpa250℃    1Mpa    9.7Mpa    15.2Mpa

测试这三种配方的模头剪切强度。将每一种配方分配到一种氧化铝板上,加热到120℃1小时(B-阶段)。这个温度足以使溶剂蒸发掉并足以使配方A和配方B中的马来酰亚胺充分固化。一种氧化铝模头(80×80密耳)用500g力在120℃B-阶段粘合剂上放置1秒钟,并将该配方在175℃烘箱中加热60分钟使该环氧充分固化。固化后,用一台Dage 2400-PC模头剪切试验机在25℃和245℃以90度角从引线架剪切出来。结果以kg力报告于下表中,表明有两种不同固化组合的配方A和B给出优异的粘合剂强度。

  模头剪切强度    对照    配方A    配方B  25℃    12.0kg    18.5kg    21.4Kg  245℃    0.8kg    2.9kg    3.1kg

进一步测试对照配方和配方A在调温调湿后的模头剪切强度。将每一种配方分配到氧化铝板上,在120℃加热(B-阶段)1小时使溶剂蒸发并使配方A中的马来酰亚胺完全固化。一种氧化铝模头(80×80密耳)用500g力在120℃粘合剂上放置1秒钟、并将该配方在175℃烘箱中固化60分钟使该环氧充分固化。然后,使该固化组件在85℃/85%相对湿度调理48小时,然后,该模头用一台Dage 2400-PC模头剪切试验机在25℃和245℃以90度角从引线架剪切出来。结果以kg力报告于下表中,并表明配方A给出优异结果。

   热/湿模头剪切强度    对照    配方A   25℃    7.4kg    14.1kg   245℃    0.8kg    1.9kg

目视法观察对照配方以及配方A和B的空洞化。将每一种配方分配在一枚裸(无焊剂掩膜)BT基板上并在120℃加热(B-阶段)1小时使溶剂蒸发,并使配方A和B中的马来酰亚胺充分固化。使1种6mm×11mm玻璃模头用500g力与120℃配方接触1秒种。然后,该组件在175℃加热1小时使该环氧完全固化。每个模头与基板组件在显微镜下进行空洞化检查。该对照配方的表面积的大约5%含有空洞。对于配方A和B来说,每10个样品中大约1个样品含有1个空洞。这被认为是1%以下的空洞化。

进一步测试这些配方的耐湿性能。如同在空洞化试验中一样,将每种配方分配到一种裸(无焊剂掩膜)BT基板上,并在120℃加热(B-阶段)1小时。一种6mm×11mm玻璃模头用500g力在120℃与该配方接触1秒钟,该组件在175℃固化1小时。然后,每种组件在85℃和60%相对湿度调理196小时(JEDEC Level II),然后对其进行峰值温度260℃的模拟焊剂再流动温度试验,观察该玻璃模头与该基板的脱层情况。(焊剂再流动温度是在一种使用焊剂将半导体芯片附着到其基板上的工艺中用来使焊剂再流动的温度。)含有对照配方的组件6个样品中4个脱层。用配方A和配方B粘合的组件分别为12个样品和9个样品中均未显示脱层。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号