首页> 中国专利> 用于稳定连铸带的永磁流体力学方法和设备

用于稳定连铸带的永磁流体力学方法和设备

摘要

永磁流体动力学方法和设备,用于稳定一个运动的柔性薄导热软磁铁磁性材料铸带(50),可抗拒当其沿一个结晶器腔体(C)移动、其前表面被来自被铸造的熔融金属加热而其反面则流过的增压的冷却剂冷却时所产生的热变形。水磁装置(38)被排列在一个阵列(51)中,其中,增压的冷却剂(93)通过固定的节流通道(90)供给面对铸带反面的压力槽。这些压力槽被磁极表面(34)所围绕。冷却剂以快速运动的薄膜的形式从压力槽中喷射出来用以冷却铸带的反面并将铸带浮起使之与磁极表面间隔开来,与此同时,铸带被强有力的伸出吸引力稳定在平直状态。

著录项

  • 公开/公告号CN1229373A

    专利类型发明专利

  • 公开/公告日1999-09-22

    原文格式PDF

  • 申请/专利权人 哈茨来特带钢公司;

    申请/专利号CN97197701.1

  • 申请日1997-07-01

  • 分类号B22D11/06;B22D11/124;

  • 代理机构中国国际贸易促进委员会专利商标事务所;

  • 代理人郑修哲

  • 地址 美国佛蒙特

  • 入库时间 2023-12-17 13:25:32

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-25

    专利权有效期届满 IPC(主分类):B22D11/06 授权公告日:20040421 申请日:19970701

    专利权的终止

  • 2004-04-21

    授权

    授权

  • 1999-09-29

    实质审查请求的生效

    实质审查请求的生效

  • 1999-09-22

    公开

    公开

说明书

本发明涉及将熔融金属浇注到带式连铸机中的熔融金属的连铸领域,所述连铸机采用一个或多个环形、柔性、运动的导热铸带,例如,金属铸带,限定出一个移动的结晶器(mold)腔体或结晶器空间,所述一个或多个铸带沿该结晶器腔体运动,同时,每个铸带的逐个区域进入该结晶器腔体,沿该结晶器腔体移动并接着离开该移动的结晶器腔体。这种连铸产品通常为连续的板坯,板材,片材或带材或者大体为矩形的连续棒材。

更具体地说,本发明涉及一种永磁流体力学方法和设备,用于稳定运动的、柔性、薄、导热软磁铁磁体铸带反抗热变形,这种铸带沿结晶器腔体运动,其前表面被来自熔融金属的热量加热,而其反面则被泵入的流动液体冷却剂冷却。

在一个采用至少一个运动的柔性薄导热铸带,例如金属铸带的铸机中进行熔融金属的连铸时,极为重要的是,尽管存在着热金属,以及由于热金属进入铸带的前部表面引起的高温,同时其反面被适当的冷却剂冷却而导致的铸带的热应力,该运动铸带仍能保持沿着一个预定的所需路径行进,同时要求铸带本身是均匀且平直的。在采用至少一个这种铸带的铸机中对熔融金属的连铸,常常受到铸带的热致翘曲、扭曲、弯折、或皱抓(称为“变形”)的影响。Hazelett等人在U.S.Patent 3,937,271;4,002,197;4,062,235;和4,082,101各专利的图8中和Allyn等人在U.S.Patent 4,749,027的图5中说明了在这种铸带中的热致横向扭曲和弯折。这样在铸带中也发生过热致翘曲和皱折。这些铸带变形的发生可以是非常突然的,就象一个真空容器的罩盖刚被打开时空气突然进入容器中时所发出的爆裂声那样。而且,这种形变常常是没有规律的,在铸带中的形变程度和形变部位是不可预测的,而对于这种铸带,本来在其沿着结晶器腔体运动时应当是平滑且没有形变的。

这种热致变形最可能发生在结晶器腔体的输入区域附近,在该处运动的铸带首次经受进入运动的结晶器腔体或刚刚进入结晶器腔体的熔融金属的急剧加热的影响。靠近输入区域熔融金属发生或开始最初的凝固,在这种凝固过程中,铸带的变形可能造成含有裂缝、凹坑或合金组分偏析的铸造产品。而铸造产品中的这些缺陷则会导致其强度,可成形性,及外观等问题。

在美国专利2,640,235(第7栏)中,C.W.Hazelett公开了一种用于上部和下部冷却带的上部和下部冷却组件。这些冷却组件的操作方式相同,同时,每个冷却组件包括一个由某种适当的易于被磁化的材料制成的板,该板构成一个电磁铁的软磁芯。当由于电流而使一个板磁化时,其作用是将一个带拉向自己。为了防止带向板的这种运动,采用了铜或黄铜垫片,这些垫片使得在  带和板之间形成一个腔室。将冷却水引入这个腔室内以便冷却带。尽管冷却水以相当大的压力被引入,并且通常足以使带变形,但是在该专利说明书中则指出,由于支撑带的磁板牢固地顶靠在刚性垫片上,所以不会产生这种变形。该说明书指出,利用这种方法,可以将带冷却,同时对其进行导向并支撑该带使之不发生变形,从而可保证产品的精确的规格尺寸。

William Baker等人在U.S.Patent 3,933,193中公开了一种用于在运动的铸带之间连铸金属带材的设备。借助于将负压所造成的吸引力加在铸带的反面或借助用于同一目的的磁力将铸带紧密地支撑在支承表面上。

Olivio Sivilotti等人在美国专利4,190,103(在第2栏,38-44行)中称:“因此,在上面所述设备的一个实施例中,铸带借助于充水箱体中的负压相对于靠近的支承件的表面被拉出。另外一种设置是提供一个磁性构件,通过铁磁支承件作用在一个铁磁性铸带上,将铸带保持在所需的路径上。”

本发明的受让者,Hazelett Strip-Casting Corporation,曾经进行过实验,试验用固定的电磁支承带翅形滑块与运动铸带的反面滑动接触,但从过度磨损和摩擦力的角度,它们并不具备足以证明其持续性的性能。而且,这些电磁翅形滑块不能成功地将运动的铸带可靠地保持或稳定在平直的状态下。

我们发现,C.W.Hazelett,Sivilotti等人,或者Baker等人在前面所提到的专利中所描述的磁性装置并没有在熔融金属的连铸工业中得到实际应用,因为作为铸带或带与磁性装置之间的空隙(间隙)的函数的磁性吸引力,即加在铸带或带上的拉力减弱太快和/或太急剧,而该力本来是试图将运动的铸带或带的热致变形部分拉回到预定的所需平直状态。这些现有装置的磁吸引力(拉力)不能伸出跨越较大的间隙,因此不适于将由于热致变形而显著偏离所需平直状态的铸带或钢带部分拉回到平直状态。这里存在着一种我们称之为“伸出的吸引力”(reach-out attraction)的缺乏或不足,即“伸出的拉力”的缺乏或不足。

对我们所发现的被称之为“伸出的吸引力”(即,“伸出的拉力”)的重要性,Baker等人既未加以公开也未提出任何建议。

在我们的发明中,借助在磁路中设置的本文中所描述的独特的永磁材料来提供装置伸出力,如前面所述,用以伸出并跨越磁路的磁极表面与一个由软磁铁磁材料制成的移动的、柔性薄板形导热铸带之间的空隙(间隙),以便将铸带发生热变形的部分拉向磁极表面,以保持铸带位于规定的所需稳定平直状态的限定范围内,如下面将要说明的,在这种状态下,铸带由注入的冷却剂流所提供的流体动力学支撑,从而,稳定化的铸带在被注入的冷却液和快速前进的冷却液所施加的推斥力浮起,悬浮在稳定的平直状态下的同时,沿着其预定的路径移动,而且铸带既不相对于固定的物体滑动也不受固定物体的磨损,而是沿着基本上没有摩擦的水膜运动。

在本发明的一些优选实施例中,包括多个排成阵列的水磁(hydro-magnetic)装置,其中,注入的冷却液流通过固定节流的通道导入作为面对铸带反面的节流喷嘴的压力槽。这些冷却剂流从靠近磁极表面或由磁极表面包围起来的节流喷嘴喷出,利用从压力槽中逸出(喷出)的冷却剂对铸带的反面施加排斥力,所喷射出来的冷却剂具有从压力槽中辐射出来的快速运动的冷却剂薄膜的形状,并在运动的铸带的反面和磁极表面之间向前运动。这些快速运动的薄膜将铸带冷却并施加一个推动运动铸带的反面的流体动力学力,用以支撑铸带并保持铸带稍稍离开冷却剂喷射磁极表面一定的距离(浮起),同时,通过从这些磁极伸出并跨越所述间隙到达运动铸带的强大的磁性吸引力(拉力),将铸带稳定在平直状态。从而,泵入的液体冷却剂被两次节流。当它通过固定节流的通道注入到面对铸带的压力槽中时,被节流一次。当它从这些压力槽中流出并穿越围绕压力槽的磁极表面被再次节流。事实上,冷却剂以快速行进的冷却剂薄膜的形式穿过铸带和磁极表面之间的间隙喷出,这些磁极表面环绕着压力槽,起着类似于冷却剂喷射表面的作用。

在这些阵列中的水磁装置中包括由独特的永磁材料构成的强有力的永磁体。在每个阵列中位于磁路中的这些磁体提供具有异常特性的伸出磁性吸引力,我们相信,它们对于所公开的本发明的实施例的成功进行是十分关键的。由这种永磁体(它具有极高的最大磁能积,单位为兆高斯-奥斯特)所提供的极强的磁势,按照我们的观点,不是在水磁装置的这些阵列或“垫”中的磁路中成功运行的唯一原因。我们认为对于它们成功运行的极为关键的另一个特征是它们的极低的退磁磁导率,该退磁磁导率是如此之低,以致其大小和空气与水或者真空的退磁磁导率具有相同的数量级。这种非常低的退磁磁导率,如所公开的那样,使磁极表面和磁路的磁极对一个含有软磁铁磁材料的运动的柔性薄导热铸带施加极强的磁吸引力(拉力),而这些吸引力则从磁极表面延伸(伸出)得比较远,并延伸穿过填充有空气和/或水的磁极表面与运动的铸带之间的间隙(空隙)。这些在磁路中的磁体提供一个共面的磁极表面阵列,这些磁极表面北极和南极交错地排列面对一个含有软磁铁磁材料的运动的柔性薄导热铸带的反面。

在本发明的优选实施例中,我们利用泵入的冷却剂固有的可变排斥力(推力),所述冷却剂由水磁装置的节流喷嘴喷出,并提供越过磁极表面作用到运动的铸带反面的快速行进的冷却剂膜。这些排斥力作为在铸带反面与快速行进的冷却剂膜所流过的磁极表面之间的增大的空隙(增大的间隙)的函数下降较快。这些排斥力与在同一位置处的由磁极表面作用在运动的铸带上的伸出的吸引力(拉力)平衡,该吸引力作为增大的空隙的函数下降得相对比较慢。下降较快的排斥效应与下降较慢的伸出磁性拉力之间平衡的有益的相互作用使得运动的铸带悬浮起来,由于拉力/推力的平衡使得运动的铸带可靠地稳定在限定的范围内。从而铸带被强迫悬浮被稳定在平直状态,支持(飘浮)在压力槽内的节流的增压冷却剂和在铸带反面的磁极表面之间的空间行进的快速运动的冷却剂溢出薄膜上。

在这些水磁装置中结合有特殊设计的清除喷嘴(sweep nozzle)用于以一个锐角向铸带喷射辅助冷却剂,形成一个沿铸带反面的单向流动的快速运动冷却剂层,对铸带间隙辅助冷却,同时使已越过磁极表面的快速行进的冷却剂膜转向,改变其方向并最终将其清除。

从而,通过将这一伸出的拉力(reach out pull)相对于水磁装置中由节流喷嘴喷射出来的注入液体冷却剂的流体力学力的平衡,同时对运动的铸带的反面在紧靠磁极表面的位置处施加推力,以便将铸带稳定在离开磁极表面而不与之接触的悬浮(飘浮)状态,对运动的铸带以规定的所需均匀度和平直度进行稳定。

这种作用在磁软铁磁材料的薄铸带上强大的伸出力与用传统的材料,甚至是铝镍钴5制的磁体的行为不同,当在所述的磁路中产生明显的间隙,例如1.5mm(0.060英寸)的间隙时,这些传统材料将失去其大部分吸引力。

我们预期,任何永磁材料均可成功实现本发明的实施例,条件是,这些材料作为永磁体安装到磁路中,该磁路包括软磁的铁磁材料,该铁磁材料构成极性相反的磁极阵列,其磁极表面可面对一个运动的铸带的反面,同时这种磁极表面紧靠着节流喷嘴(例如这些磁极表面环绕或在节流喷嘴的边缘),这些喷嘴可面对铸带的反面,其中,这些磁极表面和磁极构件可向一个运动的柔性薄导热铸带施加伸出的磁吸引力(拉力),该铸带包含有软磁的铁磁材料,其中,这些伸出的磁吸引力在磁极表面上的初始值足够强,同时,作用在靠近阵列的铸带上的伸出的磁吸引力,作为铸带部分和磁极表面之间一直增大到1.5mm(0.060英寸)的间隙的函数,从其初始值下降得相当慢,使得铸带被迫稳定地支承在一个平直度和间隙间距的适当的范围内,同时铸带离开磁极表面被流体动力学地悬浮在被增压的冷却剂流上,该冷却剂流是由节流喷嘴喷出并作为从节流喷嘴中的压力槽射出来的一种快速运行的薄膜,该薄膜在磁极表面和铸带反面之间的间隙内流过。

可设置用于旋转永磁体的旋转装置,以便在需要的时候降低它们对铸带的强大的伸出拉力,通过显著地降低拉力可以安装和拆卸很宽的柔性薄铸带而不对它们造成损害。或者,可借助一个适当的分路器将从磁体中发出的磁通量分路出去以便显著降低其对铸带的拉力,以便对铸带进行适当的处理。

本发明对连续铸机中由于运动的环形柔性薄导热铸带的热致变形所引起的长期存在的问题成功地提出了建议或者基本上克服和消除这些问题。

本文中用于主要由钢制成的导热铸带的术语“薄”是指厚度小于十分之一英寸(约2.5mm),而通常小于0.070英寸(约2.0mm)的铸带。

软磁铁磁材料的磁导率定义为B/H,其中,“B”是材料的磁通密度,单位为高斯,“H”则为材料的磁矫顽力,单位为奥斯特。文中所用的术语“软磁铁磁材料”指的是具有最大磁导率至少500倍于空气、水或真空的磁导率的材料,空气、水或真空的磁导率约为1。例如,普通变压器钢当在磁通密度B为6000高斯、其磁矫顽力H约为1.1奥斯特测量时其最大磁导率约为5,450,参见CRC Handbook ofChemistry and Physics,66th Edition,1985-1986,第E-155页。在术语“软磁铁磁材料”中所用的词组“软磁”是指这种材料相对比较容易被磁化或退磁。因此,这里形容词“软”与形容词“硬”相反,后者用于要求大的磁矫顽力进行磁化和退磁的材料,因而这种材料难以磁化和退磁。通常,用于构成双带式连铸机中的薄铸带的普通变压器钢以及四分之一硬度(quarter-hard)轧制的低碳带钢属于“软磁铁磁材料”的范围。

在美国材料试验协会的命名法:A 340-39,有关磁性测试的符号和定义的标准术语(ASTM:A 340-39,standard Terminology ofSymbols and Dekinitions Relating to Magneic Testing)中,“剩余磁感应度,Br”的定义是“当磁性材料经受对称的循环磁化条件时,对应于零磁化磁场的磁感应值”。

硬磁性材料的磁导率是在退磁曲线的有关有用部分测量时的ΔB/ΔH,而退磁曲线本身又被定义在位于正常磁滞回线的第二(第四)象限中的B-H磁滞回线,即,B-H回线或B-H曲线部分。“正常磁滞回线”定义于上述美国材料试验协会(ASTM)的命名法中。

通过下面参照附图对所提供的优选实施例的详细描述将会理解本发明的其它目的、情况、特点和优点,这些实施例和附图仅用于说明的目的而不是对本发明的限制,同时这些附图没有必要按比例画出而是用于更清楚地说明本发明的原理。特别是,下面将通过有关双带铸机并通常通过这种铸机的底部滑架进行说明。在所有的附图中相应的符号用于表示类似的部件和零件。大的轮廓线箭头指向相对于运动的结晶器腔体或者结晶器空间的纵向方向(上游-下游取向)的“下游”方向,因此,这些箭头表示凝固的金属和从入口进入运动的结晶器腔体运动的结晶器空间流向出口产品流的方向。液体冷却剂的流动方向通常与凝固金属的方向相同。液体冷却剂的局部流动用简单的单线箭头表示。

图1是当从上游侧的上方外侧观察时,双带式铸机的透视图。该铸机是一个较宽的,中等薄带型连铸机的说明例,本发明可十分有利地用于该铸机中。

图2是从上部下游侧观察时,在本发明的实施例中,位于底部滑架水磁装置的放大的部分透视图。为了更清楚地表示,在图2中,运动的柔性铸带被部分地断开表示。图2是图3以及图4和4A中沿II-II方向观察的视图。

图3是水磁装置的顶视图,其中的三个示于图2。在图3中,为了清楚的表示起见,省略了铸带和它们的带轮滚筒。

图3A是图3中的一个部分的特写视图,用于示意地显示液体冷却剂相对于表示出的下部铸带的下部反向面的流动。

图4是从铸机的侧方观察的纵向剖视图,表示当其被如图1所示的带式铸机的下滑架的其它部件环绕时的一个典型的水磁装置或者一个水磁的组合件或者阵列。铸机的运动边缘部挡板示于图1中,在图4中,为了清楚起见没有示出。

图4A与图4类似,但表示出一个用于和一个上游侧咬入带轮滚筒,也称作咬入带轮辊相互作用的水磁装置。

图4B表示图4A的一个部分的放大图,用于表示本发明的一个改型的实施例,它包括一个平的指向下游的“再燃烧器(afterburner)”冷却剂清除喷嘴。

图4C是图2的一个部分的放大图,用于表示图4B中的“再燃烧器”冷却剂清除喷嘴。

图5是从上游向下游观察时所见到的实施本发明的一个铸机的下滑架内设备的一个与部分剖面图相结合的部分垂直视图。在图5中,三个分别VA,VB和VC标志的区域是由图4B中分别由观察线VA-VA,VB-VB和VC-VC所标识的区域。

图6是图5的一个部分的放大视图,表示一个典型的磁路,该磁路具有一个薄的快速行进的冷却剂膜,该冷却剂膜穿过磁极表面和一个运动的铸带反面之间的空隙。这里,为了更清楚地加以说明,放大了该冷却膜间隙的相对厚度。

图7是一个曲线图,用于说明作为运动的铸带与磁体-喷嘴磁极表面(冷却剂压力槽的边缘)之间的间隙的距离的函数,运动的铸带的平衡或稳定。换句话说,图7表示拉力/推力在下述两者之间的平衡:(i)下降比较缓慢的伸出的磁性吸引力,可将其称为向内的拉力和(ii)下降较快的泵入的冷却剂和高速的薄冷却剂膜的排斥力,可称之为向外的推力。同时,为了对比并更清楚地加以说明,图中给出了由铝镍钴5磁体所提供的吸引力的比较快且不希望的下降。

图7A类似于图7的左部部分,其水平比例放大6比1。其中还包括了图7’A和7A”,用于进行说明。

图8是从滑架的运动的结晶器腔体区域侧面观察时的纵向垂直剖面图,表示水磁装置阵列,即,位于沿着运动结晶器腔体的长度的各位置的水磁装置。这些水磁装置之一是以柔性安装的方式表示出来的。

图9是类似于图8的视图,但它表示的是本发明的另一个优选实施例,其中,在图8中所示的位于下游的水磁阵列由图9中所示的位于下游的支承辊所取代。

图10是一个类似于图8的视图,但表示了另外一个优选的实施例,其中,在图8中所示的位于下游侧的上滑架中的两个水磁装置阵列由图10中所示的位于下游的支承辊所取代。在图10中所示的位于下游的下滑架中与支承辊相对的两个阵列是非磁体冷却剂垫。

图11是从图5的上游侧有利的点向下游观察时的一个放大的垂直剖面图,表示一个可借助一个流体驱动的磁体旋转机构进行旋转的永磁体装置。所示的永磁体装置处于开路或者“断”的位置。

图12是从图4的外侧有利的点观察时的图11所示设备的垂直剖面图。图12是沿图11的XII-XII截取的剖面。

图13表示在本发明的另一个实施例中,采用可移动的软磁铁磁旁路代替图11和12中所示的可旋转的永磁装置。图13是一个基本上从图5的有利点观察时的斜视图,图解地表示位于一个运动的铸带下方的水磁装置阵列,带有一个软磁的铁磁材料制成的槽齿形杆,它起着一个旁路的作用,这里所表示的是它处于“断”的位置(磁极表面被退磁)

图14是类似于图13的视图,但它所表示的旁路处于“通”的位置(磁极表面被磁化)。

图15表示两种不同永磁材料的磁滞回线:铝镍钴5和后面将要详细描述的最优选的永磁材料,我们将这种永磁体用于本发明的绝大部分优选实施例中。

图16是一个从铸机侧面观察时的纵向垂直剖面图,表示水磁垫阵列中另外一个水磁装置或组合件。所示的水磁装置被如图1所示的带式铸机的上滑架的其它部件所包围。图16与表示下铸带和下部咬入带轮的图4A相似;而图16则表示在带有本发明的一个实施例的现有另一种结构的协同结合体中的上铸带和上部咬入带轮。

图17是一个放大的部分剖视图,表示根据现有另一种结构的多个磁路,该结构具有一个薄的快速行进的冷却剂膜,该膜穿过磁极表面和运动的铸带的反面之间的间隙。本视图的左部是图16和图19中的A-A所指示的部分。图17的右部是沿A′-A′截取的。为了更清楚地表示,这里放大了冷却剂膜的相对厚度。

图18是类似于图17的放大的部分剖面图,但是,图18是远离咬入带轮翼更下游部分的视图,图18的左部和右部部分位于图16和19中分别沿B-B和B′-B′处。

图19是图16的部分放大图,用于详细表示可旋转体组件的式样。

本说明书将针对双带铸机进行说明,该铸机的特点是具有上、下滑架,用于旋转上、下铸带。为了便于解释,将针对下滑架进行说明。在一个双带铸机中,正在凝固的金属沿其前进的通道线通常是直的。在单带铸机(这里不做说明)中,通道线可以遵循一个略成弯曲的路径。并且,在双带铸机中,通道线可以大体平直地沿铸机的纵向延伸,而所述带在结晶器腔体的一个部位上可以沿铸机的横向略微弯曲。对于所有这些情况,由磁极表面的位置而形成的通道线或其导向件的阵列,可称为“共面阵列”或“平面阵列”。

尽管一条“平”带可以沿着一条遵循略呈弯曲的路径的通道线运动,但是当其沿着通道线以所需平直度穿过整个通道线时,可以认为该平带处于平直的条件下。并且,在通道线的某一部分上略微横向弯曲的平带,也可以被认为处于平直的状态下。一个用于引导沿通道线以所需平直度运动的铸带的磁极表面阵列可被称为磁极表面的“共面阵列”或者可称为“平面阵列”。

图1是一个较宽的双带铸机36从上游、上方和外侧观察的视图。下滑架被标为L而上滑架被标为U。通过一个在连铸机技术中已知的熔融金属进给装置(未示出),熔融金属被引入运动的结晶器腔体或结晶器空间C(图4,4A,5,6,8,9和10)的进入端49。在图1左侧用一个大空心箭头37示意地标出熔融金属的引入。在图1的右边示出的连续铸造产品从运动的结晶器腔体的出口端排出(箭头57)。

运动的结晶器腔体C的下侧和上侧分别被旋转的下部和上部环形、柔性、薄导热铸带50和52所束缚。在本发明的优选实施例中,铸带50、52是由软磁铁磁材料制成的。例如,由金属材料如硬度的轧制低碳钢制成。可以对铸带的前表面进行本领域已知的适当的处理,例如喷砂和/或涂覆。如本领域所公知的,运动的结晶器腔体C的两侧被两个已知的旋转的整体环链边部挡板54所约束。下铸带50和块环链54,如运动箭头55所示,绕着一个与运动结晶器腔体的入口(上游)端49相对的下(咬入)带轮56和一个与运动结晶器腔体的出口端相对的下带轮58旋转。上铸带52绕着一个上部上游(咬入)带轮60和一个上部下游带轮62旋转。这种双带铸机的结构和操作在带型铸机技术领域中是已知的。如果读者需要关于这种铸机的更多的信息,可以参考Hazelett等人的专利。

图2的视点在图3和图8中由点划线II-II标出。所示下铸带50被一个总体由51标出的水磁装置38的阵列引导。阵列51可以被称作一个水磁垫。每个水磁装置包括一个磁极构件39,该磁极构件39相对于运动结晶器腔体C的上-下游方向(箭头61)纵向延伸。在阵列51中,这些细长磁极构件39相互平行、间隔排列。它们的顶表面提供一个磁极表面34的共面阵列。在这些细长磁极构件39之间确定出细长的空间66,该空间如图所示相对于结晶器腔体纵向延伸。

细长磁极构件39由软磁铁磁材料构成,例如软磁钢,如430型铬不锈钢。铸带50被从节流喷嘴喷出的液体冷却剂所提供的流体动力学力所支持,贴近磁极表面34运动。稍后将对节流喷嘴进行解释。

在水磁装置38的阵列51中,我们安装了许多相对紧凑的永磁体32,这些永磁体32具有北磁极和南磁极,在图2中分别以N′和S′标出。这些磁体被插入位于阵列51中的连续间隔的平行细长磁极构件39之间的细长空间66中。最好,在每个空间66中至少有一个永磁体32,以便在整个阵列51中,如将从图3和5中理解到的那样,一个阵列中的各磁极构件39(除图3所示的阵列中的两个最外侧的磁极构件之外)具有一对面对其对侧的相同极性的永磁体磁极。这些相同极性的永磁体磁极对具有跨越阵列51的交替的北(N′)极和南(S′)极。因此,如图2所示,在左边的磁极构件39具有一对面对其对侧的北极永磁体磁极N′。在图2中部的下一连续的磁极构件39具有一对面对其对侧的南极永磁体磁极S′。接着,在图2右边的下一连续的磁极构件39具有一对面对其对侧的北极永磁体磁极N′,等等,由此跨越阵列51。

永磁体32的这种排列的结果是,在相互间隔跨越阵列51的连续的水磁装置38中,磁极构件39的磁极表面34交替地具有北(N)极和南(S)极,向运动的铸带50上施加强大的伸出吸引力(拉力)(图2,5和6)。

如图3所示,在阵列51中有许多永磁体32,例如在图4中表示出了五个,如图3中最为清楚地表示出来的那样,这些永磁体32被插入到位于沿着细长磁极构件39的长度纵向间隔、纵向对齐的位置上的各细长空间66中,在该阵列51中,在各空间66中的第一个磁体32位于靠近两相邻磁极构件39的极性表面34的上游端118。在各空间中多个磁体的最后一个位于靠近两相邻磁极构件39的磁极表面34的下游端120。在表示一个鼻形阵列51n的图4A中,各空间66中的五个磁体,在靠近鼻形阵列的一个下游端相互邻接以避免与带轮翼128相互干扰。

在图6中,虚线30表示一个位于图6中心处的完整的磁路,和位于左侧和右侧的另外两个磁路的一部分。铸带50的相对厚度和磁极表面34与铸带之间的间隙75(间隔)尺寸被放大,以便使图解清楚。一个完整的磁路30从图6中心处的一个永磁体32的北极N′开始。例如,在各空间66中有五个磁体,相对于每个空间66和两个相邻的磁极构件39而言,这个磁路30代表五个这样的磁路中的任意一个。该磁路从磁极N’延伸入水磁装置38的第一磁极构件39,并且由此在第一构件中延伸到第一磁极表面34,在这里,磁体的强大磁通势使位于该第一磁极表面的强大的第一磁极N磁化。该磁路从这第一磁极表面34延伸越过第一间隙75并进入软磁铁磁带50,并且随后在该带中向第二间隙75延伸。该磁路延伸越过第二间隙75,并进入阵列51中相邻水磁装置38的相邻磁极构件上的磁极表面34,在被磁体32的强大磁通势磁化的强大的南极S处进入。磁路在第二磁极构件39中延伸向磁极S’并进入该S磁极。该磁路在磁体中从其S’极至N’极结束。

作为一个适当的设置的例子,如图所示,阵列51中的磁极构件39以其中点均匀地间隔排列。磁极构件39的中点至中点的间隔可以例如在大约3/4英寸至大约2英寸的范围。这些细长磁极构件例如可以为大约1/2英寸厚,在相对于结晶器腔体纵向延伸的相邻磁极构件之间确定出细长的空间66。在图6中,由于磁极构件39面向它的磁极表面34稍稍变窄,所以这些空间显得在靠近铸带50处稍宽。在实施例中的永磁体32如图所示从S′极延伸到N′极。

各永磁体32可以包括许多单独的永磁体,这些单独的永磁体以北极对南极的方式适当地叠加,串联地端部对端部排列;和/或许多单独的永磁体,这些单独的永磁体以侧部接侧部并列排列,这样以便提供非常强大的磁体32,该磁体32在其相对的端部或表面33(图3A和6)具有总的北(N′)极和南(S′)极,而磁力线从所述的端部或表面33穿过。如果所述磁体是由易腐蚀的材料制成的,那么最好对这些磁体间隙镀覆,以便耐蚀,例如镀镍。如图2,3,5和6所示,这些永磁体32被设计成长方体,在其内部磁力线的S′至N′的方向上大约为1.5英寸长至1英寸长,其横截面至少大约1平方英寸。

具有N′极和S′的磁体32的端表面33不必与磁极构件39的侧表面实际精确接触。这些磁体端表面33只需与相邻磁极构件的侧表面邻接。术语“邻接”在这里可包括真正的接触。如果在端表面33和磁极构件39的侧表面之间存在任何间隔,则在端表面33和磁极构件39之间形成的空间间隙在磁力线回路30方向上应足够小,使得在每一个完整的磁路30中只有两个有效的间隙75。在磁极表面33具有小的空气间隙或没有空气间隙的情况下,被由永磁体32的独特特性所提供的强大的磁通势所磁化的每个总的完整的磁路30,将具有不可思议的能力,“伸出”穿过间隙75,用于以传统磁体或实际大小的电磁体无法实现的方式向运动的铸带50上施加强大的牵引力。随着间隙75的增大,这种吸引力相对较慢地减弱,这将进一步结合图7和图7A进行解释。

请再注意图6,可以看到,在每个完整磁路30中的两个间隙75内充有相对快速运动的液体冷却剂的相对较薄的膜114,现将对其进行解释。利用图4和4A所示的冷却剂供应系统,将液体冷却剂93泵入在各磁极构件39中纵向延伸的管道通路92中。液体冷却剂93一般为含有防锈剂的水,液体冷却剂93被适当的过滤以去除颗粒,然后被泵入在下部滑架L中横向延伸的集水管100。在图1中表示出了这个集水管100的端部。在集水管100中泵取的冷却剂93可以被增压到例如大约30磅每平方英寸(p.s.i.)以上,但在特定的机械设备中,增压不能太大,以便使铸带离开间隙75悬浮起来,在间隙75处获得的伸出磁吸引力可反抗热变形,强制稳定铸带。供应管98(仅示出了一个)从集水管100延伸出来。每个这样的供应管连接到一个在磁极构件39中对角钻出的通道96上,通道96与磁极构件之内的一个管道通路92相连。

图4A所示的细长磁极构件39的形状与图4中所示的形状相比有所改变,以便一个具有图4A结构的细长磁极可以向上游突出超过咬入区域110,从而其鼻部39n可插入下咬入带轮辊56上的翼128之间的槽127(图4A)中。入口49的这一咬入区域110在图4A中由一个穿过该入口和下咬入带轮56的轴111并且也穿过上咬入带轮60(图1)的轴(未示出)的点划线表示出来。

许多供应管98沿着集水管100以一至两个半英寸中心间距并列地均匀间隔排列,为了适应这种拥挤的条件,这些供应管的横截面可以是椭圆形,用以提供适当的流动能力。在细长磁极构件39中纵向延伸的管道通路92可被看作是一个增压管,因为它向多个专门设计的节流喷嘴提供泵入的冷却剂93,所述节流喷嘴包括固定节流的通路90和面对铸带并由磁极表面34作为边缘包围的压力槽102。各管道通路92的上游和下游端如图4和图4A中所示在94处被插入插塞。

从管道通路92泵入的冷却剂93进入固定节流的通路90,引导被节流的泵入的冷却剂流97进入面对铸带反面的压力槽102。在图2,3,3A,4和5中表示出了许多这样的压力槽。它们被表示成椭圆形,且沿磁极表面34的纵向伸长。例如,压力槽102磁极表面纵向长度为3/8英寸,且大约为3/16英寸深,3/16英寸宽。这些椭圆形压力槽102沿磁极表面34的长度紧密地间隔排列,例如在它们的椭圆形的各自的下游和上游端之间的间隔大约八分之一英寸;因而如图所示,例如磁极表面34的纵向每英寸有两个压力槽(即,中心至中心间距大约一个半英寸)。例如,如图所示,各压力槽102具有一个大约0.06平方英寸的区域面对铸带表面。

压力槽102中的节流冷却剂流97向运动的铸带50的反面施加推力(斥力)。被节流的冷却剂从各压力槽排出,以快速行进的液体膜114的形式从压力槽向外辐射入间隙75中,并穿越形成压力槽边缘的磁极表面34。除了由节流增压冷却剂流97施加到运动的铸带50反面的推力外,各个快速行进的液体膜114也向铸带的反面施加动力学推力(斥力)。随着由于离开相关联的磁极表面4的铸带50的一个局部区域的任何形变位移而造成的相邻的间隙75的任何的增加,在各压力槽102中和其周围产生的这些流体动力学推(斥)力会立即降低(几乎瞬时)。

各节流通路90的目的之一是使与其相连的压力槽102与相连的管道通道92隔离(隔绝、分离),而增压的液体冷却剂93是从管道通路92送入压力槽的。借助于这种隔离,进入特定的槽102的冷却液流97的压力的任何变化(由于运动的铸带50附近局部区域的瞬时形变位移)都不会影响管道通路92内附近的冷却剂93的压力。因此,不会由于在进入任何压力槽的冷却剂流97中瞬时间会发生的局部压力变化而发生强制的回流效应。因而,各压力槽102与它的冷却剂流97和它的辐射流动膜114相对于相邻的槽独立地起作用。任何流体97和任何液膜14的行为都不会显著影响管道通路92中的增压冷却剂93的压力,也不会显著影响任何腔体压力槽或任何其它冷却剂膜的作用。

为了实现这种隔离,节流通路90(可被看作是很长的固定的节流孔)的内径(I.D.)最好不要大于例如大约1/16英寸(约0.063″),且由于可能会被偶然阻塞的开口具有小于大约0.04″的I.D.,所以最好不小于大约0.04英寸。如图6所示,通路90大约四分之三英寸长,I.D.大约0.045英寸。

作为适当的操作参数的例子,集水管100(图4和4A)中的液体93的压力可以在大约30p.s.i以上,但是如上所述,不能过大。在下面一个用于解释的实例中,集水管压力设为大约100p.s.i.至110p.i.s.的范围内(大约7个巴的范围)。由于假设在供应管98和连接通道96中发生相对不太显著的压降,所以各管道通路92中的冷却剂93的压力在大约100p.s.i.至110p.s.i.的范围。

为了便于说明,最初假设在图6中运动铸带50由拉力/推力平衡而稳定就位。运动铸带由节流液流97和从压力槽102穿过间隙75溢出的快速行进的冷却剂的相对较薄的膜114支撑。根据这样的稳定铸带初始条件,只有适当的液流97进入槽102。“液流”在此是指每单位时间的冷却剂体积的值(即,量)。因此,例如,在这些初始条件下,假设在节流通路90中产生大约30至40p.s.i.的压降。因此,例如,进入压力槽102的液流97的压力为大约100至110p.s.i.的集水管压力减去大约30至40p.s.i.的压降,从而在运动铸带的稳定位置的这些初始条件中,液流97的压力应当在大约60至80p.s.i.的范围。

现在,为了便于解释,假设开始发生热变形,使图6中的运动铸带50的局部区域远离磁极表面34,从而使间隙75变大,导致快速行进的膜114的厚度增加,从压力槽102辐射出来的这些液膜114的溢流迅速增加,进入压力槽的液流97增加,使形成压降的节流通路90中产生的压降迅速增加,例如大约40至50p.s.i.。因而,进入压力槽102中的液流97的压力立即变为假设大约50至70p.s.i.,并且随后磁路30中的一个相对不变的磁吸引力的伸出拉力立即将铸带50的变形区域拉回到它的原始稳定位置,再次被立即恢复的、稳定节流液流97和稳定的、相对较薄的、快速行进的液膜114流体力学地支撑。

在水磁装置38中的总体效果中,有一个固定节流的通道(固定的细长孔)90,按照从93至97的冷却剂流动方向,位于紧接压力槽102的上游。并且,还有一个由间隙75的可变空间提供的可变的节流孔,按照快速行进的液膜114中的冷却剂流的方向,位于紧接着压力槽102的下游。因此,有利地,进入压力槽102的冷却剂流97的压力立即(几乎瞬时)响应间隙75的间距的改变,并且从而立即允许强大的伸出磁拉力平衡被弱化的流体力学推力,使运动的铸带50的状态达到平衡。

从图3A和6中可以注意到,节流冷却剂流97和快速行进的冷却剂膜114(图6)从直接与磁极表面34邻接的压力槽102中辐射出来,磁路30中的磁力线在磁极表面34处非常强。在这种局部方式中,伸出的磁吸引拉力和流体力学推力在它们自己紧挨着的位置处的拉/推关系保持平衡,即,只在沿着薄铸带50的一个小的横向距离内发生相反的推力和拉力平衡。从而对于这些相反的拉力和推力对铸带的有效作用,只涉及到一个不显著的力臂。因此,借助于以局部方式起作用的相对的拉力和推力,有利地将不显著的机械变形(与热变形相反)引入到薄铸带中。

在图3A中表示出了由液流线114标出的流过磁极表面34的快速行进的冷却剂膜的方向和形状。节流冷却剂流97(图6)和这些快速溢出冷却剂膜114将铸带50浮起,使其保持离开磁极表面34一定距离,因此有效地解决了由于运动的铸带与滑动支撑件或铸带支撑件的接触而产生的摩擦和磨损的问题。

同时,这些快速行进的液膜114有效地从切过或掠过任何运动较慢的冷却剂的铸带(图3A中未示出)的反面带走热量,以便有效地冷却铸带。若不采用单向清除液流115(sweeping flow)(后面将进行描述),快速行进的冷却剂膜114在流过相应的磁极表面34后将与相邻磁极构件中同时流过磁极表面34的快速行进的冷却剂膜相互冲击,并且在各细长空间66中线附近可产生一个中间湍流冲击区113,其中,冷却剂具有大体为零的净单向动量,因此,除了地心引力的下落或流出作用(spiu-off)外,对于从磁极构件39上清除冷却剂将没有作用。

为了使任何湍流的冷却剂113与快速行进的冷却剂膜114一起转向、重新定向、融合、恢复及从各细长空间66中去除,以便为在压力槽102连续流出的冷却剂流留出空间并对铸带进行适当的冷却,一个快速运动的、数量多的、单向的清除冷却剂流115(图3A,4和4A)被引入各空间66的上游端。该单向清除液流115可防止铸带反面附近的任何冷却剂流相对于适宜地从该反面带走热量而言过慢(即,对于适当的冷却铸带,以防止铸带热损伤而言过慢)。该清除液流115使得所有冷却剂最终沿一个方向流动,同时,在铸带反面上的所有点处,在冷却剂和铸带之间保持相对稳定的速度,以便防止铸带热损伤。在图4和图4A中更清楚的表示出冷却剂的这些单向清除液流115由清除喷嘴112提供,该清除喷嘴与上游管塞94附近的管道通路92的上游端相连接,以便使增压的冷却剂流93进入这些清除喷嘴。

各清除喷嘴112(图4和图4A)以一个尖的角度对准下游侧,当到达运动的铸带的反面时成较小的锐角。各清除喷嘴112具有一个盖形指甲状导流板116,安装在清除喷嘴下游排放端附近,用于从清除喷嘴横向排出高速流动的强有力的清除冷却剂液流115。指甲状导流板116以一个比它们相连接的清除喷嘴112略微更小一些的锐角(即,一个较小的角)指向运动的铸带反面。

各指甲状导流板116将从清除喷嘴喷射出来的强有力的液流115(图3A)导向铸带上靠近各细长磁极构件39的一个上游、船形尖端118(图3和3A中最清晰可见)附近的一个相对均匀、精确确定的区域中,而所述液流115从其清除喷嘴以一个冲击锐角流向铸带反面。磁极构件39的下游端通常也与其上游船形尖端118一样被制成尖的船头形120(图2和3)。清除喷嘴112的孔具有大于节流孔90但小于管道通路92的横截面积。清除喷嘴112的横截面积与管道通路92的横截面积的相对比例大小的确定,应使得在集水管100(图4和4A)中的冷却剂的增压压力下,进入压力槽102的冷却剂流97(图6)不会匮乏,同时,清除液流115也不会匮乏。因此,清除冷却剂115的速度、流量和动量,对于沿着向下游方向融合、偏转和清除带走所有冷却剂湍流113和所有从间隙75逸出后的快速行进的液膜114来说,足够快且量足够大,同时,在铸带的反面的所有点上保持基本的相对速度,该速度足以保证防止铸带热损伤。

在清除冷却剂115(加上随其带向下游的其它冷却剂)从细长空间66的下游端流出之后不久,一个相对于运动的铸带横向延伸的导流斗122将冷却剂从运动的铸带上舀走。一个相连的冷却剂流动槽(未示出)用于将舀出的冷却剂返回到一个供应池(未示出)中。除了导流斗122不包括向铸带再施加冷却液用的集水管或集水管喷嘴外,这种冷却剂导流斗122和它的冷却剂流动槽,例如可以与示于首页的Hazelett等人的美国专利No.3,036,348图6和7中的导流斗类似。

如图4A所示,磁极构件39(只示出了一个)具有一个狭窄的向上游侧突出鼻部部分39n,该鼻部39n突出超过咬入区域(nip region)110,使得该鼻部39n插入咬入带轮辊上的两个翼部128之间的槽127中。因此,参见图4A,清除喷嘴112和它的指甲状导流件116均位于相对于咬入区域110稍靠上游的位置处。如图8,9和10中由51n所标出的那样,一个具有狭窄鼻端部分39n的水磁装置38的阵列被称为鼻形阵列。

咬入带轮56、60和与带轮主体成一整体地被示意性示出的它们的翼部128由非磁性材料制成,例如抗磁性或顺磁性材料制成,例如304型奥氏体不锈钢,从而所述翼部和咬入带轮不会使泄漏的磁通量离开磁极构件39,39n并进入所述翼部和带轮,这种泄漏将使从磁极构件39的鼻部39n的磁极表面34获得的用于稳定运动的铸带的伸出磁通量减少。作为一种选择,翼部可由上述的非磁性不锈钢制成,而带轮的主体由软磁铁磁材料制成,用于与磁极构件的鼻部39n共同形成完整的磁路。作为另一种选择,所述翼部128可以由软磁铁磁体制成,而带轮主体由非磁性材料制成。然后,在铸机工作期间,伸出作用的永磁体被设置成以交替的北极和南极磁化所述翼部,用以吸引并稳定铸带。例如如图11和12所示,这些磁体可以与操作机构可动地安装在一起,移动该磁体,用以减少翼部和带轮之间的磁吸引力,以便从铸机上卸下铸带及安装其它铸带。作为一种选择,可以采用例如图13和14所示的可动分路,用于减少在翼部和铸带之间的磁吸引力,以便进行上述的拆卸和安装。

在各永磁体中的永磁体材料强有力地磁化磁路30(图6),同时也强有力地磁化整个磁极构件39,用以向含有软磁铁磁材料的运动的铸带50上提供强大的伸出吸引力(拉力),所述永磁体材料具有某些非常重要的磁路特性:(1)这种永磁体材料的一个样品具有与B-轴在一点相交的正常的磁滞回线(B-H回线),其中,该样品具有一个磁通密度等于或大于约8,000高斯的剩余磁感应强度Br。(2)这种永磁体材料的一个样品具有正常的磁滞回线(B-H回线),其中,在第二象限或第四象限与回线该部分的中点相切的直线具有一个表示中点微分退磁磁导率的斜率,若空气的磁导率为1,则微分退磁磁导率Δ高斯/Δ奥斯特大约等于或小于4。并且,该永磁体材料需要具有很强的稳定性,即,大概地说,它需要难于退磁,即,从磁学的意义上讲,较“硬”,需要很大的退磁矫顽力来使该永磁体退磁。磁体32的这些有益的特点将结合图7和15进一步进行讨论。

在这里所用的术语一个永磁体材料样品的“中点微分退磁磁导率”是指以一条直线的Δ高斯/Δ奥斯特表示的斜率,所述直线在回线位于第二或第四象限的部分的中点处与样品的B-H回线相切。应当理解,样品的B/H回线被画在一个曲线图中,其中,B值和H值分别沿垂直轴和水平轴被标出刻度,使真空的B/H或ΔB/ΔH,即,由向真空施加矫顽力H而产生的磁通密度B的斜率,当其在同一曲线图上时总是1;换而言之,当画在同一曲线图上时,向真空施加的矫顽力变化ΔH,磁通密度ΔB的变化率总为一。在下面的表中,我们列出了关于这些重要的关键特性的优选参数。

                      表I

在磁体32中的一个永磁体材料样品,具有一条与B轴交于一点的B-H回线,在所述交点处,剩余磁感应Br具有以高斯为单位的磁通密度值

      一般            等于或大于8,000

      优选            等于或大于大约9,000

      更优选          等于或大于大约10,000

      最优选          大约11,000以上

                  表II

在磁体32中的一个永磁体材料样品,具有以Δ高斯/Δ奥斯特表示的中点微分退磁磁导率:

      优选            等于或小于大约4

      更优选          等于或小于2.5

      最优选          等于或小于1.2

在前面的介绍中我们谈到,在我们看来,由上述的永磁体32提供的如表I所示的很强的磁通势并不是进行顺利操作的唯一前提。如表II所示,它们的很低的中点微分退磁磁导率也是非常关键的。例如,铝镍钴合金(alnico)5的中点微分退磁磁导率大约为30。铝镍钴5的这一大约为30的量值与表II中最优选的值1.2相比的比例为大约30/1.2,等于25。因而,对于磁体的N′极至S′极的给定长度,一般而言,间隙75(图6)的间距增加的增量引起的对由铝镍钴磁体提供的磁吸引力的破坏作用大约是对由本申请中的磁体32提供的磁吸引力的破坏作用的25倍。这不仅是量的不同,而是质的区别!因此,铝镍钴5磁体丧失了对铸带50或52的热变形的控制;而配置在阵列51或51n中并按照对优选实施例的描述工作的本发明的磁体32则不会丧失对所述热变形的控制。

考虑磁体32在其自己的磁路30(图6)中起着异乎寻常的作用的另一条途径是,要认识到磁路30中的磁力线必须从S′到N′穿过磁体30,所述异乎寻常的作用是由极低,例如约1.2的中点退磁磁导率所提供的。假设磁体32从端部33至端部33具有一英寸(25.4mm)的物理长度。量值1.2与空气的值1相比意味着磁体32自身中的磁力线必须跨越1物理英寸除以1.2的长度的“内部表观空气间隙(internalapparent air gap)”,即0.83英寸(21mm)的内部表观空气间隙。在磁极表面34的1.5mm的间隙75与磁体本身的21mm的“内部表观空气间隙”相比,等于7.1%。相反,铝镍钴5磁体的1物理英寸的长度除以其假设的量值为30的中点微分退磁磁导率,具有仅为0.033英寸(0.84mm)的“内部表现空气间隙”。1.5mm的间隙75与铝镍钴5磁体本身的0.84mm的“内部空气间隙”相比,等于178%。再次看到,178%与7.1%相比,对磁性吸引力的破坏程度为25倍。在由职业工程师Lester R.Moskowitz撰写并在1976年和1985年由Malabar,Florida 32950的Krieger Publishing Company刊印的PermanentMagnet Design and Application Handbook中,在他的名为“Analysisof a magnetic hysteresis loop.(The hysteresis curve shown is typicalfor Alnico 5)”的图6-3中,通过绘制一条与第二象限的中点相切的直线,求出铝镍钴5的中点微分退磁磁导率大约为30。

如图4和4A所示,细长磁极构件39由一个横向梁104固定并支撑,该横向梁由非磁性材料(顺磁性材料或反磁性材料)制成,例如,303型非磁性的奥氏体不锈钢。磁极构件39被置于梁140中的槽106中。在磁极构件39的上游端是一个固定孔95,用于使磁极构件对正并对其进行辅助的支撑。位于梁104之下的横向梁108被包含在下部滑架L的一个底盘架141中。该梁108由适当的结构材料制成,例如结构钢。

在我们目前对本发明的理解中,我们相信,当本发明被应用于双带铸机36的上游最远处位置中时,即在接近结晶器腔体C的整个长度的第一个三分之一或其左右处时,是最具价值的,因为该处铸带上的热应力最为强烈。所述第一个三分之一位置是从入口49开始测量的,如图8,9和10中所示,在入口49处一个进给喷嘴138将熔融的金属引入。该最远的上游区是脆性的正在凝固的金属最初从液态向固态转变的区域。

在图4,4A和5中的阵列51和51n由横向梁104、108刚性安装到一个铸带滑架的底盘架上。为了连续铸造某些金属,可能需要采用沿结晶器腔体C的整个长度刚性安装的水磁阵列或垫51n和51。

在连铸中的实践表明,在与结晶器腔体C的下游部分相连的铸带支撑设备中,通常需要适度的弹性,特别是在铝合金铸造过程中,在这种情况下,金属在贯穿铸造产品P的整个厚度上并未完全凝固,但已形成足够的固体金属使其在冷却过程中发生显著的变形。这种弹性能够使运动的铸带的前表面保持与被冷却的金属抱紧接触。

在用于需要在铸带支撑设备中提供弹性的金属连铸操作的连铸机中,一个或更多的下游阵列51可以被安装在盘簧上,或安装在柔顺的、具有弹性的横向支撑件上。可以操作时在利用未示出的机构进行调整下游阵列51面对或远离铸造腔体C的位置和排列这种用于调节柔顺、具有弹性的支撑件的铸带支撑调整机构,可以类似于Hazelett和Wood的美国专利4,552,201;4,671,341;4,658,883及4,674,558中所出示和说明的机构。

一种可稳定水磁铸带垫阵列51的弹性和柔顺性进行调整的方法是,采用不同直径的节流通路90(在图6中最清晰可见)。给定的增压压力可以选择在大约30psi的以上的范围,对于采用用于铸造特定金属或金属合金的、一条或多条特定的运动、环形、柔性、薄导热铸带,可以按要求选择。

如图8所示,在本发明的实施例中,有四个水磁性装置38的铸带稳定阵列51。另外,还有两个与下部和上部咬入带轮辊56和60可操作地连接在一起地鼻形铸带稳定阵列51n。在这些鼻形阵列51n中,磁极构件39的上游细长鼻形部分39n(图4A)分别被插入下部和上部咬入带轮辊56和60上的圆周翼部128之间的槽127中。在鼻形阵列51n的下游(沿方向箭头61所指的方向)设有冷却剂导流斗122,并且在靠近结晶器腔体C中间部分的下部和上部阵列51的下游也设有这样的导流斗。从下部和上部的下游阵列51的下游端流出的冷却剂,可以从下部铸带的背面下落,和从上部铸带的边缘溢出。

在图8中,一个上部下游水垫阵列53借助柔性安装件140例如盘簧,被柔性安装到上部铸带滑架的底盘架142上。磁体通常被从水垫阵列53中略去。

关于图9和10中所示的本发明的实施例,从图4A中可以看到,在带翼的铸带支撑辊126之前的任何导流(和洒施)斗123都装配有一个沿底盘架的横向延伸的集水管101。向该集水管101内供应被增压的冷却剂流93,并且在该导流和冷却剂洒施斗123上,包括许多将冷却剂射流105对准指向下游的冷却剂洒施表面107的冷却剂排放喷嘴103(在图4A中只能看到一个)。这样的带有一个集水管101、排放喷嘴103和洒施表面107的导流和洒施斗123在本领域中是已知的。如图4A所示,紧接冷却剂洒施表面107的下游是一个本领域已知的带翼的铸带支撑辊126。

在图9所示的本发明的实施例中,在下部和上部铸带滑架L和U中均有一个位于从第一导流和洒施斗123的下游的带翼铸带支撑辊126的第一序列,该序列紧接鼻形阵列51n的下游。然后,在两滑架中均有一个接在带翼的铸带支撑辊126的第二序列后的第二导流和洒施斗123。如Hazelett和Wood的美国专利4,552,201;4,671,341;4,658,883及4,674,558中所示,一个或多个这样的带翼的铸带支撑辊126,可以朝向并离开结晶器腔体C弹性地安装,和/或是可弯曲且可调节的。

在图10所示的本发明的实施例中,双带铸机36的上部滑架与图9所示的双带铸机36的上部滑架的装配类似,即,具有两个带翼的铸带支撑辊序列,这两个序列各自位于导流及洒施斗123之后。在图10中,下部滑架具有两个流体动力学装置38的非磁性阵列53,除了永磁体32被从非磁性阵列53中略去之外,这两个阵列与图2、3、3A、4、4A、5和6中所示的水磁装置38的阵列51类似。这些阵列53位于结构与图4中所示的导流斗122类似的导流斗122之后。

依据所用的清除冷却剂115的量,可能需要采用一个整体、扁平的液体冷却剂喷嘴或“再燃烧器”(式作用的)喷嘴130(图4b、4c),该喷嘴从各磁极构件39的下游端指向下游,并且是其整体的一部分。该再燃烧器(作用式)喷嘴130覆盖铸带50或52位于最后的压力槽102′和离开导流器107后从洒施斗而来的冷却剂132的冷却剂-铸带-冲击区之间的区域。如图所示,所述冷却剂132的冲击区134(也参见图4A)接近所示第一支撑辊翼部126与铸带50接触的位置。再燃烧器喷嘴130被示于图4B-图4C中,图4B是图4A的一个放大部分,而图4C是图2的一个放大部分,在图2中为了更清楚地表示,删去了下铸带50。再燃烧喷嘴130取代了下游尖形船头120(图2、3)的区域。在图4B右侧最远处的一个最后的压力槽,由于它与其它的压力槽不同,所以被标为102′,上述的不同是因为喷嘴130连接到喷嘴102′中,并由其供给液体冷却剂。插入压力槽102′的节流通路90′与其它节流进给通路90不同,它具有显著较大的直径,例如大约3/16英寸的直径。由铸带50或52的背面确定出各再燃烧器喷嘴130的一个扁直侧。由在磁极构件39的再燃烧器端形成的、缩小的平台状边缘表面133确定出另一扁直侧。喷嘴130沿横截面的纵向被示于图4B中,并以一个从上方倾斜的视角被示于图4C中。由箭头130表出从喷嘴130流出的冷却剂的下游分支清除液流(图4B和4C)。代替喷嘴130,可以采用几种装置中的任何一种,向下游喷射液体冷却剂,例如采用可设置在磁极构件中的内部通路,这种通路在磁极构件的侧部是空的,并且通常指向下游。做为选择,可在空间66中于磁极构件之间设置管道或喷孔和/或导流器,用于向下游分配液体冷却剂。

如图11所示,可以设置一个磁体旋转构件145以减少在铸带50上的磁路30的强大的伸出吸引力,以便可以安装或拆卸薄的柔性铸带而不对其造成损伤。该装置145具有一个安装在轴承148(图12)上且沿铸带滑架的纵向延伸的细长圆筒转子147,与磁极构件39平行取向并位于磁极构件之间。圆筒形转子147具有一个由两个对半的磁软铁磁体不锈钢,例如430型不锈钢制成的轴向开口的壳体146。该转子包含多个磁体32(图12),这些磁体32的内部磁通路径S’-N’与穿过转子147转轴151的直径面149平行取向。转子的壳体146具有展平的侧部155,该侧部155与直径面149平行,用以在转子壳体上有效地形成北极N′和南极S′。邻近转子147安装有软磁铁磁体材料,例如430型不锈钢的中间桥接件154。这些桥接件154具有面对圆柱形转子147且与之间隔一定距离地贴近的圆柱形凹表面153。

图11和12中,所示转子147位于其“关”的位置上,在该位置上,磁路通常与图6中所示的30处类似,被有效地断开,以便从图11中的磁体32出来的磁通量从磁极表面34偏离开。偏离的磁通量通过从与转子直径面149的方向大体平行的磁性桥接件154中穿过,基本绕开从N′至S′的路径。在该“关”位置上,直径面149和转子的展平侧155与磁极构件39的侧表面平行取向。因此,到达磁极表面34的磁通量大大减少。从而,对铸带50的吸引力大大减小,以便对其进行安装和拆卸且不对其造成损伤。上部和下部支撑件156和158是非磁性的,例如由303型奥氏体不锈钢制成。

为了“接通”磁体旋转装置145,将它的转子147绕轴151旋转90°,以便它的直径面149直接对准桥接件154的凹表面153的中心区域。因此,磁体的北极N′和南极S′通过位于其壳体上的相应的N′极和S′极紧密地磁连接,用以紧密地连接这些桥接件154,以便在图11所示的阵列中形成完整地磁路。图11中的该“通”磁路可以被设想为从磁体北极N′穿过转子壳体34,146的一个N′极,一个第一桥接件154,一个第一磁极构件39到一第一磁极表面34,并经一个第一间隙75,进入铸带50,在铸带中延伸到并穿过一个第二间隙75进入一个第二磁极表面34,穿过一个第二磁极构件39到达第二桥接件154,并穿过转子壳体146的一个S′极,到达一个磁体南极S′,与各磁体内部从S′极到N′极的磁路一起,形成完整的磁路。

为了将转子147旋转90°到达它的“通”位置,它的壳体146设有枢轴152(图12),枢轴152的轴颈被支承在安装于支撑件156,158上的轴承148中,该壳体146还具有一个固定到枢轴上并可枢转地在161处连接到活塞杆163上的挂环臂(clevisarm)162,而活塞杆163连接到一个液压缸160中的活塞165上。一个复位弹簧166将活塞压在使磁体旋转装置145的“关”位置上。在图11中转子挂环臂162的“通”位置由虚轮廓线162′标出。液压缸160具有活塞室167,活塞室167通过一个软管164连接到冷却剂供应管98上。因此,每当通过集水管100供应增压的冷却剂时,冷却剂进入活塞室167,并反抗弹簧166的偏压力举起活塞165,以便将转子147转向其“通”的位置。一旦冷却剂压力被关掉,弹簧166就会回到磁体旋转装置145的“关”位置。

代替采用独立的液压缸160,为了操作每个转子147,阵列51中的所有磁体旋转装置145挂环臂162可以枢轴连接到一个共用的致动杆上,该致动杆延伸出阵列51并手动或液压操作,用于同时将所有的转子147转向它们的“通”或“关”位置。

图13和14表示一个用于将磁路转向“通”或“关”位置的可供选择的机构,该机构采用一个软磁铁磁体材料,例如430型不锈钢的纵向可动的旁路杆(shuntbar)170。该旁路杆170可滑动地与磁极构件39邻接,可从其在图13中的“关”位置滑动到其在图14中的“通”位置。该旁路杆被制成槽齿形,以便提供多个具有间隔槽174的台状凸起172。这些高台沿杆170纵向间隔,其中点至中点的间距等于磁极构件39的中点至中点间距“d”的两倍。这些高台172和它们的间隔槽174沿旁路杆延伸出大约与“d”相同的距离。因此,如图13所示,在“关”位置处,每个高台172直接与两个相反磁性的磁极构件39邻接,即直接与两个相反磁性的磁极构件39接合,因此,直接从N磁极构件39的中心桥接到相临的S磁极构件的中心,以便分流磁力线,使之偏离磁极表面34。相反地,在“通”位置上,所有平台172直接与相同极性(例如N)的磁极构件39邻接(接合),而间隔槽174都面向相同极性(例如S)的磁极构件,并与这些磁极构件间隔开来,所述的极性与同高台相连接的磁极构件极性相反。因此,只产生最少的分流,并且按前面所述完成整个磁路30(图6)。

在所示的本发明的实施例中,细长磁极构件39沿着从上游至下游的取向安装,因为这种纵向的上游至下游的取向对双带连铸机是很适宜的。依我们看来,可能存在这样的运动铸带连铸机结构,在这种结构中,对于包括许多特殊设计的喷嘴90,102及其清除喷嘴112,116在内的细长磁极构件的横向安装是很方便的,以便将冷却剂流115横向推进穿过运动的铸带的反面。

同时,我们注意到所述细长磁极构件39进行纵向成形使其磁极表面34沿纵向呈曲线形以便适合于例如在一个单带连铸机中的特殊情况,其中,单一铸带的路径通常遵循一个半径较大的平缓弯曲的圆弧。在这样一种具有纵向弯曲的铸腔的铸机中,磁极表面34将沿纵向弯曲成一个对应于运动铸带的平缓圆弧的平缓弯曲的圆弧,以便将运动的铸带磁流体动力学地稳定在其所需的精确的路径上。这种纵向弯曲的磁极表面可被认为是共面的阵列,因为它们将运动的铸带稳定在一个平直的状态。

另外,在一个或一对铸带沿直线路径运动的连铸机中,磁极表面34在沿着铸造路径的纵向方向上是直的,但是磁极表面阵列可以是沿着路径的横向方向平缓弯曲的,使得它沿着铸造路径运动时使铸带横向地平缓弯曲。这种横向弯曲的磁极表面阵列可以被认为是共面的,因为它们将运动铸带稳定在一个平直状态。

本发明的这些实施例的效果是,运动的铸带被强迫保持在平直状态,并被限定在一个很窄的平直度(平坦度)的范围内,同时也被限定在一个距离水磁装置38的流体动力学支撑阵列51或51n的磁极表面34的余隙(间隙75)距离很窄的范围内。

我们预期由具有上面所述的非常重要的关键特性的永磁磁料制成的任何永磁体32均可成功地实现所公开的本发明的这些实施例。我们喜欢采用含有商业上称之为稀土磁性材料的永磁材料的磁体32,例如由包括至少一种“稀土”化学元素(序号为57至71的镧族化学元素)的磁性材料构成的磁体,例如最好含有稀土化学元素钕或钐的永磁材料的磁体。例如,可采用最大磁能积约为20MGOe(兆高斯-奥斯特)的由含有钴和钐的化合物(Co5Sm)的永磁材料构成的磁体,因为它的B-H磁滞回线具有一个约9,000高斯的剩余磁感应强度Br,也可采用含有最大磁能积在约22至28MGOe的Co17Sm2材料的磁体,因为它的B-H回线具有一个约9,000至11,000高斯的范围内的剩余磁感应强度Br

最大磁能积约为20MGOe的Co5Sm永磁材料,具有约为1.08的中点微分退磁磁导率。最大磁能积在22到28MGOe范围内的Co17Sm2永磁材料具有约从1.15到1.0范围内的中点微分退磁磁导率。

我们最为优选的永磁体32含有以铁、钕和硼的三元素(三元)化合物,通称钕铁硼,Nd-Fe-B或NdFeB为基础的永磁材料,钕铁硼的最大磁能积范围约从25到35MGOe。这种磁体可称为“钕(neo)磁体”,目前具有约从32到35MGOe的钕(neo)磁体是最为优选的。最大磁能积在约25到35MGOe的NdFeB永磁体材料具有一个剩余磁感应强度Br在约10,700高斯到约12,300范围的B-H回线,并具有约1.15的中点微分退磁磁导率。钕(Neo)磁体的抗腐蚀性很低,因此它们是镀镍的。

我们预期,在未来的其它永磁材料中,例如铁-钐-氮化物及其它未知的三组分化合物永磁材料及未知的四元素(四元)永磁材料,有可能成为市售产品,有可能具有如表I所示的足够高的剩余磁感应强度Br的B-H回线,同时也具有如表II所示的足够低的中点微分退磁磁导率,适用于本发明的实施例。

图15表示最大磁能积约为35MGOe的NdFeB永磁材料的近似的普遍B-H回线200。B轴和H轴相交于原点216。这种“钕neo磁体”材料如图所示一般在202处显示出约为从20,000到25,000高斯的饱和磁化强度。该B-H曲线200在点204处与正B轴相交,其剩余磁密度Br约从12,000到12,300高斯。回线200在第二象限ii(退磁象限)中的部分十分有益地基本上为一直线206,它倾斜下降到水平H轴的点208处,其值约为-11,000奥斯特。在B轴的左方用于奥斯特的负号表示矫顽力H的作用方向与在202处产生最初磁饱和的原始矫顽力的作用方向相反。圆210表示在退磁的第二象限ii中回线200的206部分的特性是我们目前所感兴趣的区域。在曲线200的基本上为一直线的退磁部分206的中点212处所标出的约7,000高斯的磁通密度值乘以所标出的约5,000奥斯特的矫顽力值的乘积给出最大磁能积约为35,000,000高斯奥斯特,即,约35兆高斯奥斯特(约35MGOe)。

在中点212处确定中点微分退磁磁导率,它是在中点212处直线对B-H回线206部分的切线的斜率,约为1.15。总起来说,这种永磁性“钕neo磁体”材料具有(1)约为12,000到约12,300高斯的剩余磁感应强度Br,以及具有(2)约为1.15的平均微分退磁磁导率,从而可提供一个所述的强大而有益的伸出吸引力。

在图15还表示出具有饱和磁化强度的铝镍钴5的近似一般B-H回线220。铝镍钴5的这一磁滞回线与B轴相交于剩余磁感应强度Br约为12,800高斯处,如上面提到的Lester R.Moskowitz的手册的图6-3中对铝镍钴5的磁滞回的剩余磁感应强度Br线所测得那样。但是,铝镍钴5曲线220具有一个不大于约15,000高斯的饱和磁化强度。在第二象限ii中铝镍钴5的退磁曲线222几乎是垂直地下降,与H轴相交于226,在该处小于1,000奥斯特。从而,铝镍钴5的最大磁能积不大于7MGOe左右。除磁能积比较小之外,铝镍钴5的退磁曲线22陡峭的下降表明在中点224处的中点微分退磁磁导率约为30,如上面所说明的那样,这意味着铝镍钴5不适合用于本发明的实施例的磁体。

在图7和7A中给出了一个直线230,它基本上代表了采用由具有最佳特性例如最大磁能积为35MGOe的永磁材料“钕neo磁体”的磁体时,作为增大的间隙距离75的函数所绘制的磁极表面34吸引一运动的铸带例如铸带50的伸出吸引力(拉力)的逐渐降低。增大间隙距离75导致永磁体32所经受的退磁矫顽力的等效的增大,从而吸引力沿着一个大致的直线230下降,该直线具有类似于图15中B-H回线200的直线部分206的特性。

以英寸和毫米为单位的间隙距离75示于横轴,作用于铸带上的平均拉力(对于磁体吸引力为负的)和平均推力(对于冷却剂的排斥力为正)示于纵轴。以p.s.i.(磅/英寸2)为单位的作用在运动铸带上的平均拉力和平均推力是很难测量的,因此沿纵轴的这些数值仅是近似值;但它们的相对值一般是近似成正比的,而最有意义的则是它们的相对值。

在图7和7A中同时还给出了作为间隙距离75的函数所绘制的急剧下降的曲线240,它基本上代表了由压力槽102喷出的冷却剂流97(图6)和由这种压力槽辐射出来并通过间隙75的快速行进冷却剂膜的急剧下降的流体力学排斥力(对铸带的推力)。假设将一个适当泵入的冷却剂提供给集水管100,然后增大节流孔90的直径用于增大液流97(图6)并增加膜114的厚度,从而会增大间隙距离75并使曲线240稍向右方移动同时也使曲线240变得不太陡峭,这种效应可以认为是使得排斥的冷却剂垫的作用稍稍具有更大的“弹性”。

在图7和7A的一般由242所指出的条件下,产生使移动铸带平衡稳定的状态,在242处两条曲线230和240相交。该曲线交叉点242是这样一种状态,在该状态下,不存在随机变化的热膨胀铸带变形力(下面将把它看作好象是一个“内在的铸带压力”),例如在铸带的反面被冷却的同时于结晶器腔体C内的热金属的影响下,在铸带内产生的热导致的膨胀力。

尽管在参照图7,7A,7A′和7A″描述铸带的动力学时,“力”一词比“压力”一词显得更加自然,但我们发现热力学产生作用在铸带局部区域内的类似于压力的效应。这种内在热变形力的类似于压力的效应在下面的讨论中具有“压力”一词的含义,但不是当铸带处于平衡稳定状态下由压力槽102加到铸带上的冷却剂的较大压力。在连铸金属的过程中一直存在快速漂移不稳定的同时也是不定量的内在铸带压力,在想象当中可很方便地用分别示于图7A′和7″随机连续急速的竖直漂移水平线260′和26″来代表。图7A′表示在由一个水平线260′描绘出的基准线所表示的中等大小(约为3p.s.i.的压力)的铸带的内在压力的瞬间状态。图7A″示由水平线260″所描绘的较高内在铸带压力(约等于5.5p.s.i.的压力)的瞬间状态。

为了确定一个给定情况的组合是否能将铸带浮起使之稳定而精确地悬浮,需要绘制所有的力,加到铸带上的实际的冷却剂的压力和所牵涉到的内在的铸带的压力。在图7和图7A中只给出了冷却剂的压力而未绘制出随机的内在铸带压力。但是在操作过程中,如图7A′所示一般总是存在两个排斥力:不仅是(i)有冷却剂流和冷却剂薄膜114(图7和7A中的每一曲线240)所产生的压力,而且还有(ii)由260′所描绘的瞬态随机内在铸带压力所产生的额外压力,在图7A′中它约为3p.s.i.。在图7A′中这两条曲线240和260′相加形成一个新的曲线240′,这条新曲线240′是用于反抗磁力(吸引压力)曲线230的总排斥压力(推力)。我们可以把这个合成的曲线240′想象成连续、杂乱并随机地上、下变化,如箭头241所示。在图7A′中在伸出的磁吸引曲线230和合成的推力曲线240′之间产生的新的交叉点242’会稍稍向图7A中所绘制的点242的右侧未知处偏移,而伸出的磁体32的磁致牵引压力仅被降低一个很小的百分数,因此伸出的磁吸引力仍保持牢固地强制控制一个被稳定的铸带。

相形之下,在考虑铝镍钴5磁性曲线250时,可以看到,在该曲线250与合成推力曲线240′之间的瞬时平衡交叉点则从图7A中的位置252向右侧移动较远,移到交叉点252′处。因此由铝镍钴5的曲线250所代表的磁性压力则下降约33%。随机的内在铸带压力260′(图7A′)和260″(图7A″)急速变化不断地将平衡交叉点移到一个新的位置。

当假定的瞬态随机内在铸带压力增大,等于如图7A″的水平线260″所描绘的5.5p.s.i.时,对于磁性曲线250情况变得十分重要,而对于伸出磁性曲线230问题并不严重。绘制在曲线230上的伸出磁力平衡交叉点242″表示仅有一个很小的向右额外运动,其中,伸出的拉力稍稍被进一步降低一个额外的很小的百分比。但对于铝镍钴5磁体,在铝镍钴5曲线250上的不确定的交叉点252″,则表明磁致牵引力下降了将近在瞬态随机内在铸带压力260″发生之前的不到一半。间隙75大体上被增大了约0.10至0.12mm。此外,平衡位置252″不再是一个确定的交叉点而是一个测不准的区域,因为两条曲线250和240″不是象伸出磁性曲线230所保证的那样以一个确定的大角度交汇而是一个很尖的锐角(在几乎平行的曲线250和240″之间)交汇,这使得平衡位置相对来说是不很确定的。在这种特殊情况下,对于一个相当大的距离来说,曲线240″和250几乎是以平行的关系汇聚的,从而几乎不可能对铸带进行可靠的强制的稳定定位。如果试图采用铝镍钴5磁体的话,则任何明显高于绘制于曲线260″的随机不稳定的内在铸带压力都将无条件地克服由铝镍钴5的曲线250所表示的磁力,并使铸带脱离磁极构件39的控制。

这种示于图7和7A中的伸出的磁吸引力曲线230和铝镍钴5牵引力曲线250之间极为不同的行为,是由于伸出吸引力(牵引力)曲线230与流体动力学冷却剂(推力)曲线240的交汇更接近于垂直,而不是平行。另一方面,铝镍钴5吸引力曲线250与流体动力学冷却剂(推力)曲线的交汇更接近于平行而不是垂直。从而,在用铝镍钴5磁体处理随机不稳定的力时,造成间隙距离小到只有0.2mm的运动铸带的一部分的热变形位移就很可能造成失去对运动铸带的稳定性控制。相反地,在图7中即使在间隙距离大到1.5mm(约0.06英寸)时,由曲线230表示的最优选的伸出的吸引力(牵引力)下降不到50%,因此由曲线230表示的伸出牵引力很可能不会失去强制性的稳定控制。

在本发明的一个实施例中,水磁装置38A的另外一种结构使得可将可旋转的永磁体32置于每一咬入带轮60和56的翼128之间的槽127中。因此伸出磁体32连同它们相关的改进的细长磁极构件39A一起总是位于咬入区域线110的上游。因此,这种磁体32连同它们改进的磁极构件39A一起在上游的定位提供了一个相互间隔平行的在整个上游延伸的咬入区线110的磁极表面34的共面阵列51。从而,可获得由彼此间隔平行的磁极表面34的共面阵列发出的充分伸出的磁吸引力,用于稳定靠近熔融金属37进入运动的结晶器腔体C的入口49(图1)的上游区中的铁类铸带50和52。这一靠近咬入区域线110的运动结晶器腔体的上游区包括邻近两个旋转铸带52和50的凝固金属表层的初始凝结区,该区在高质金属产品的连铸中是极为关键的(图1)。

主要参照图16,所示的伸出磁体32介于上游咬入带轮60的翼128之间。图中给出了位于咬入区域线110处的改进的细长磁极构件39A的磁极表面34的上游端118。该线110是当铸带52离开咬入带轮翼128并变为沿运动的铸腔C的向下游的平面(平直)行进时,该铸带52的切线位置。

在图11和12中所示的实施例中,可旋转的磁体32位于下游与带轮翼128对齐并不向上游延伸插入到这些翼之间。在图16至19所示的结构中,每一种改型的磁极构件39A的所有部件(包括它们的磁体)均被制成在一个带轮槽127的宽度范围内(图17)。如图16至19所示的这一实施例中,翼128的中心至中心的均匀间距约一英寸(约25毫米),翼的厚度约为1/8英寸(约3.2mm),其槽宽约7/8英寸(约22mm)。因此,改型的磁极构件39A的所有部件均被制造得足够窄,限定在一个小于7/8英寸(小于22mm左右)的宽度范围内。从而,这些改型的细长磁极构件39A被设置在横贯水磁垫阵列51的约1英寸(25mm)的中心到中心平行间距处。

所示的咬入带轮60具有一个坚固的芯体,带有由该芯体机械加工整体制成的翼,如图16,17和19所清楚地表示的那样。该咬入带轮60连同其翼128由非磁性不锈钢制成,例如316型锻制不锈钢,它是一种非磁性材料,它实际上对于磁性环境没有任何效果。

现同样参照图17,并向下游观察,可以看到可旋转的磁体32位于带轮翼128之间。在图17(同时也在图16,18和19)中,所表示的磁体32旋转到它们磁化铸带的位置(伸出吸引铸带的位置)。在阵列51中交替地从上游至下游延伸的磁体32的行被组装在它们的磁体旋转装置145A中各自的磁极构件39A内,使它们具有相同的极性取向,例如其北极N(N′)在顶部;而可旋转的磁体32的交错行则组装在它们的磁体旋转装置145A中各自的磁极构件39A内使它们具有相反的磁极取向,其南极(S′)在顶部。通过这些位于所示的位置上的磁极向转动着的铸带52施加伸出的吸引力,则位于横越水磁垫阵列51彼此间隔的相继的水磁装置38A中的细长磁极构件39A的磁极表面34具有相互交错的面对转动的铸带52的北(N)和南(S)极。

磁力“线”30跨越靠近带轮翼128的空气间隙129并跨越(穿过)带轮翼128本身,带轮翼是非磁性的。适量的漏磁通30′是不可避免的。然而,大量所需的伸出磁通30穿过磁极表面34并延伸穿过铸带52从而铸带被强烈地伸出吸引向磁极34的水磁共面垫阵列51。

在前面所述的压力下泵入的冷却剂93由集水管(未示出)提供,例如图4和图4A中所示的集水管100。该增压的冷却剂93经供应管98并经对角线通道96进给,导入指向上游的中间管道通路92A(图16,17和19)并从这里进入指向下游的管道通路92(图16-19)。这些通路可被看作是将增压的冷却剂进给到固定节流的通道90中的增压通道。由通道90喷出的节流减压的冷却剂97进入压力槽102,快速运动的冷却剂膜114(图17和18)由压力槽102冲出并通过磁极表面34和铸带52之间的窄间隙75。从而在磁力与该流体动力学力之间达到平衡,导致运动的铁类铸带52紧靠磁极表面34的共面阵列(平直阵列)51稳定地悬浮,如前面对本发明的其它实施例所描述的那样。

应当注意,图4和图4A的固定通路92具有一个上游方向的部分和一个下游方向的部分,但它们较长的部分在上游侧。相反,如图16所示,是中间管道通路92A将冷却剂93导向上游直到咬入区线110之后一个足够大的距离。然后,这些中间管道通路92A在距离线110足够远的上游的位置处与管道通路92连通,使得冷却剂93沿管道通路92的这个有效长度流向下游。通路92A和92的端部由插塞94封闭。

位于磁极表面34前端118附近的清除喷嘴112(在图16中看到一个)和位于水磁垫阵列51下游120的尾端清除喷嘴120(在图16中只看到一个)(“再燃烧器喷嘴”)分别提供清除冷却剂115和135,它们以锐角指向铸带52的反面,用于有利地使从压力槽102喷出并已经通过磁极表面34和铸带反面之间的间隙75的冷却剂膜114(图17和18)向下游偏转,并将其向下游推进。

可以看出,在从图2至图6和图11至14所示的本发明的实施例中,具有位于细长磁极构件39之间的磁体32。此外,为了向铸带施加伸出的(reach-out)吸引力,在图2至6和图13及14中的每一固定位置的磁体的内部北(N′)-南(S′)磁力线的路径与铸带平面平行取向并与这些磁极构件39的侧表面垂直。图11和12中的磁旋转装置145也位于磁极构件39之间。在图11中所示的该磁旋转装置145处于“关”的位置,其中,其磁体32以及转子147的内部北(N′)-南(S′)磁力线的路径与铸带平面垂直取向并与磁极构件39的侧表面平行。当该可旋转装置145的控制臂162转到“通”的位置162′(图11)时,则磁体32及其转子147的内部北(N′)-南(S′)磁力线路径变成与铸带平面平行取向并垂直磁极构件39。

在图11中,具有软磁退磁材料制成的桥接件154,该桥接件具有细长圆柱形凹面153,这些凹面面对并靠近磁旋转装置145的细长圆柱形转子147,用于在处于“通”位置的转子及两个相邻的磁极构件39之间传送磁力线。

在图16至19所示的实施例中,改型的磁旋转装置145A(只表示出一个)位于它们各自改型的细长磁极构件39A内。为了强调起见,这里重复指出:每一个改型的磁旋转装置145A(图16-19)位于每一个改型的磁极构件之内,与磁旋转装置145(图11及12)截然不同,后者位于两个相邻的磁极构件39之间

为了将该磁旋转装置145A收入各每个改型的细长磁极构件39A中,将每个这种磁极构件制成第一部分和第二部分39A-1和39A-2,其中的每部分有一个细长的圆柱凹面153(图17和18),该凹面面对并紧靠磁旋转装置145A的细长圆柱形转子147。

所述第一磁极构件部分39A-1靠近铸带52或50并被设置成包括管道通路92,节流通路90,压力槽102,磁极表面34,清除喷嘴112和120,并包括如图16-19所述的其它零部件。

第二磁极构件部分39A-2远离铸带52或50,包括对角线通路96,中间通路92A并包括图16-19所示的其它零部件。该第二部分39A-2还包括阵列51的一个构架部分176(图18)。图18所示的该构架176横向跨越并刚性连接多个第二磁极构件39A-2。所示的构架176包括多个细长圆柱形曲线表面153,这些表面紧靠各改型磁极构件39A中的各转子147但与其间隔。所述构架176可按需要加工使之横跨并连接到许多距离较远的磁极构件部分39A-2上。如果需要,它可横跨铸带的整个宽度,根据制造工艺而定。或者,也可制成多个较窄的构架176,将它们并列配置以便横向跨越铸带的整个宽度。

为了将整个阵列51组装并支持在铸机中,将一横梁180(图16和19)固定到构架176上(或者固定到多个并列配置的较窄的构架176上)。

如图16和19中对角虚线178所示,在构架176上开槽,为咬入带轮翼128提供由图17中间隙129表示的余隙。在178处所开的槽提供了多个狭槽,每个狭槽的宽度等于两个空气间隙129(图17)加上一个翼128的宽度,并从而形成多个向上游延伸的远离磁极构件部分39A-2(图16,17和19)。为了对咬入带轮60的芯体提供余隙,每一个远离的磁极构件部分39A-2的一个表面在180处被进行对角倾斜加工。

为了将靠近的磁极构件部分39A-1固定到构架176上,在它们的构件39A-1的两侧设置纵向延伸的台肩182。紧贴在两个靠近磁极构件39A-1的台肩182上的纵向延伸的非磁性的例如由非磁性不锈钢制成的紧固杆184,借助于旋入构架176上的插入孔187中的非磁性机械螺栓186,安装到构架176上。紧固杆184的宽度适宜于将靠近的磁极部分39A-1相互间隔并平行地进行定位。同时,机械螺栓186的长度尺寸使得当靠近磁极部分39A-1的圆柱形曲面153适宜地带一定距离紧靠在各磁性旋转装置15A的转子时,机械螺栓的端部将紧贴在插孔187的端部。

再次注意图16,可以看到,靠近的磁极部分39A-1的鼻部39n-1向上伸出到该靠近的磁极部分的圆柱形曲面153的上方。该鼻部39n-1在鼻部39n-2处靠在远离的磁极部分39A-2上,并包含一个使中间通路92A与管道通路92连通的连接通路92-1。同时,该鼻部39n-1通过一个机械螺栓188协助将远离和靠近的磁极部分39A-2和39A-1固定在一起,该机械螺栓188通过远离磁极部分39A-2的一个鼻部39n-2并旋入第一鼻部39n-1的插孔189中。

现将描述改型的磁体旋转装置145A(图中只表示出一个)的结构和动作。磁体32被组装在磁体旋转装置145A的每个转子147内的多个条带177(图16和19)中。例如图16表示一个有三个磁体条带177-1,177-2,177-3的转子。轴向对齐的两个磁体条带177-2和177-3每个包括三个磁体。图中所示的转子具有第三个最远的上游侧条带177-1,它含有四个磁体。这最后一个条带177-1向上游侧延伸到咬入区域线110。

所示的磁体32(图17和18)被加工成具有一对扁平侧面的形状,并具有一对平行的键槽190,每个侧面上有一个这样的键槽。这些键槽沿细长圆柱形转子147的方向纵向延伸,即,它们与转子的旋转轴平行地延伸。在每个条带177-1,177-2和177-3中的磁体被紧固在一对平行的由非磁性材料构成的形成于磁体的槽形壳体细长侧面装配件146上。这些侧面装配件146的内表面与条带中的磁体的侧面相吻合。每个装配件具有一个沿径向向内凸起的细长肋(键)并与条带中的磁体的键槽190吻合。

对侧面装配件146的周边和磁极N′和S′的周边进行成形以便为紧贴着靠近的和远离的磁极部分39A-1和39A-2的曲线形圆柱表面153的转子构成一个圆柱形外表面。

如图17和18中右侧所示,侧面装配件146的端部由安装螺栓191安装到端部装配件192的各半部中。如图19清楚地表示的那样,中间条带177-2的端部装配件具有与转子147的轴连接的插孔193。轴颈194从上游和下游条带177-1和177-3的端部装配件沿轴向凸出,它们的端部装配到插孔193中并用销195固定在这些插孔中。这些轴颈194由套管195支承并在该套管上是可旋转的,该套管由外壳196紧固。

第一条带177-1的上游侧端部装配件上的上游端部轴颈194被安装在一个由外壳197支承固定的套管中,而该外壳则由一个机械螺栓198固定在远离的磁极部分39A-2上。一个下游端轴颈轴向凸出穿过套管196,该套管由一个安装螺栓198固定到远离的磁极部分39A-2上的一个托架199上。

为了使铁类铸带52能够被卸下并被替换,将每个磁旋转装置145A绕其转子147的轴从图16-19所示的“通”的位置转到“断”的位置,在该位置处磁极N′和S′处于与铸带平行的方向,即,相同极性的磁极N′和N′及相同极性的磁极S′和S′变得转成彼此相对从而大大降低了磁极表面34和铸带52的中间的吸引力。一个致动杠杆臂162(图16)紧固到阵列51中每个磁旋转装置145A的轴向凸起的下游端轴颈194上。在整个阵列中,一个公用操纵杆201通过枢轴连接件203连接到每个致动杠杆臂162的端部。从而在整个阵列51中的所有条带通过移动公用操纵杆201可同时旋转到它们的“通”或“断”的位置。

虽然这里详细公开了本发明的一些特定实施例,但应当理解,本发明的这些例子是为了说明的目的。这一公开不能被看作是对本发明的限制,因为熟悉连铸领域的人员可在不超出下述权利要求的范围内对所描述的方法和设备在细节上加以改变或改用等效的永磁材料,以便使这些设备和方法在连铸过程中适宜于以合适的平直度保持一个转动的环状柔性导热的含有磁软铁磁材料、并在金属连铸过程中在一个连铸机中工作的铸带平直状态,并进一步使其可用于各种特定的带式连铸机或各种带式连铸设备。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号