首页> 中国专利> 拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用

拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用

摘要

本发明公开了一种拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用,所述AtIQM2的氨基酸序列经过1个或几个氨基酸残基的取代和/或缺失和或添加且与序列1具有相同功能的有序列1衍生出来的蛋白质。本发明发现ATIQM2基因的编码蛋白能与钙调素结合,其外源DNA插入突变体具有在长日照和短日照条件下延迟开花的表型,说明AtIQM2基因所编码的蛋白具有调节开花的作用。因此,AtIQM2基因可用于控制植物的开花调节,改良植物的经济性状,对农业生产具有重要的意义。

著录项

  • 公开/公告号CN104098664A

    专利类型发明专利

  • 公开/公告日2014-10-15

    原文格式PDF

  • 申请/专利权人 广州大学;

    申请/专利号CN201410040966.8

  • 申请日2014-01-27

  • 分类号C07K14/415;C12N15/29;C12N15/82;A01H5/00;

  • 代理机构广州凯东知识产权代理有限公司;

  • 代理人姚迎新

  • 地址 510006 广东省广州市番禺广州大学城外环西路230号

  • 入库时间 2023-12-17 01:19:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-05-10

    授权

    授权

  • 2014-11-12

    实质审查的生效 IPC(主分类):C07K14/415 申请日:20140127

    实质审查的生效

  • 2014-10-15

    公开

    公开

说明书

技术领域

本发明涉及基因工程领域,特别是一种拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用。 

背景技术

高等植物由营养生长向生殖生长转换的过程称为成花诱导,与其生存、繁衍和进化息息相关,其机理尤其是分子机理是当前植物生物学研究的前沿热点。成花诱导过程由遗传和外界环境两个因素决定,受错综复杂的信号途径调控(孙昌辉等,遗传,29:1182,2007)。近年来,在拟南芥中,成花诱导的研究比较系统且进展较快。Srikanth和Schmid(Cell Mol Life Sci,68:2013,2011)在综述中统计了已鉴定的55个基因,加上Braam研究组发现的AtCML23和AtCML24(Delk等,Plant Physiol,139:240,2005;Tsai等,Plant Signal Behav,2:446,2007)共57成花调控基因,分别涉及如下的6个遗传调控途径:光周期途径通过光受体将光信号传给生物钟,再传给主要信号分子CO(CONSTANS),诱导靶基因FT(FLOWERING LOCUS T)的表达,进而实现对成花的调控;CO的时空表达是光周期诱导开花的关键(An等,Development,131:3615,2004)。春化途径的第一阶段是诱导产生的VIN3对FLC(FLOWERING LOCUS C)的去乙酰化(Sung等,Nature,427:159,2004)和非编码RNA对FLC转录的抑制(Swiezewski等,Nature,462:799,2009);第二阶段通过VRNs对FLC组蛋白H3进行甲基化,降低成花抑制子FLC的水平(De Lucia等,Proc Natl Acad Sci USA,105:16831,2008)。赤霉素途径通过DELLAs和MYBs来调控下游的成花整合基因(Achard等,Plant Physiol,143:1163,2007)。自主途径的所有基因通过抑制FLC的表达间接地促进成花(Srikanth和Schmid,Cell Mol Life Sci,68:2013,2011)。温度途径主要通过FLC、FLM(FLOWERING LOCUS M)和SVP(SHORT VEGETATIVE  PHASE)调节开花(Blázquez等,Nat Genet,33:168,2003)。年龄途径独立于其他几条途径,依赖于microRNA156,后者的水平随年龄增加而下降,解除其对靶基因SPL(SQUAMOSA PROMOTER BINDING PROTEIN-LIKE)的抑制而调控开花(Wang等,Cell,138:738,2009)。 

在多变的外部环境和内部生理条件下,这57个基因所编码的蛋白通过SOC1、FT和LFY等整合因子实现对开花的精准控制(张素芝和左建儒,2006;Srikanth和Schmid,Cell Mol Life Sci,68:2013,2011)。尽管如此,有关的研究数据还十分有限,离全面揭示整个成花调控的遗传网络还有很长的路要走。 

作为一种重要的第二信使,钙离子(Ca2+)在植物细胞对体内、外刺激所产生的特定生理反应中起着重要作用,参与多种细胞生理和生长发育调控(Yang和Poovaiah,Trends Plant Sci,8:505,2003)。钙调素(calmodulin,CaM)是包括植物在内的真核细胞内广泛存在的、高度保守的、最重要的一类Ca2+受体,在Ca2+信号转导中起着至关重要的作用。不过,除拟南芥AtCaM7被发现具有转录调控活性(Kushwaha等,Plant Cell,20:1747,2008)外,其他CaM本身不是结构蛋白,也不具备酶、转录因子或离子通道活性,必须通过其下游靶标——CaMBP来调节细胞生理和生长发育。可见,研究CaMBP是解析CaM信号通路的重要途径。然而,已经鉴定和进行过功能分析的植物CaMBP还十分有限,其功能涉及生长发育、代谢调节、细胞骨架功能、离子通道、激素合成与反应、转录调控、胁迫反应等过程(毛国红等,植物生理与分子生物学报,30:481,2004;Bouch é等,Annu Rev Plant Biol,56:435,2005;韦慧彦等,生物化学与生物物理进展,34:124,2007;DeFalco等,Biochem J,425:27,2010;田长恩和周玉萍,植物学报,48:447,2013),例如AtCCaMK参与花药发育(Poovaiah等,Planta,209:161,1999)、AtNPG1参与花粉萌发(Golovkin和Reddy,Proc Natl Acad Sci USA,100:10558,2003)、AtDWF1参与油菜素内酯合成(Du和Poovaih,Nature,437:741,2005)、AtCBK3(Liu等,Plant J,55:760,2008)参与非生物胁迫反应、AtMLO家族(Kim等,Nature,416:447,2002)参与植物防卫反应等。 

早在1989年,Friedman等就发现Ca2+参与牵牛的成花调控。不过,在已鉴定的拟南芥成花调控基因中,涉及Ca2+/CaM信号的只有AtCML24及其高度同源的AtCML23。这2个基因编码的钙调素类似蛋白(calmoduolin-like sensor,CAL)均能在与Ca2+结合后发生构象变化;AtCML24表达下调突变体在长日照下延迟10-30天开花(Delk等,Plant Physiol,139:240,2005),而单独AtCML23的功能缺失突变体无成花表型,只有在与同样没有明显成花表型的AtCML24的弱突变体组成双突变体时才表现延迟成花,说明二者在成花调控方面功能冗余且AtCML23的贡献较小;进一步分析发现,这两个蛋白调控包括CO和FLC等成花信号整合基因在内的表达以及调控成花的NO的产生(Tsai等,Plant Signal Behav,2:446,2007);不过,与它们直接结合的下游靶标仍不清楚。除此以外,仅有烟草的两个钙调素结合蛋白激酶NtMCK1和NtCBK1被发现涉及成花调控(梁述平等,中国科学C辑,31:306,2001;Hua等,J Biol Chem,279:31483,2004)。因此,寻找更多参与成花调控的Ca2+/CaM信号通路成员,研究其分子机理并应用于植物开花时间的控制,具有重要的理论和实践意义。 

发明内容

本发明的目的在于提供一种拟南芥钙调素结合蛋白基因ATIQM2。 

本发明的另一目的在于提供一种拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用。 

本发明是通过如下技术方案来实现的:拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用,所述拟南芥钙调素结合蛋白基因ATIQM2为以下氨基酸序列组成的蛋白质:Met Gly Val Ser Phe Ser Cys Pro Phe Ala Glu Gln Asp Asp Val Glu Ala Ala Leu Asp Ser Val Thr Val Lys Ser Ile Ser Phe Gly Asp Asp Asp Glu Cys Lys Thr Pro Lys Arg Ser Val Asn Phe Asn Asp Gly Thr Leu Glu Pro Thr Ile Leu Lys Ser Met Gly Ser Gly Lys Met Val Val Glu Lys Ser Val Ser Leu Lys Gly Met Gln Leu Glu Arg Met Ile Ser Leu Asn Arg Ser Val Lys  Asp Asn Gly Phe Glu Ile Ala Lys Glu Phe Ser Val Leu Asp Pro Arg Asn Pro Lys His Glu Ala Ala Ile Lys Leu Gln Lys Val Tyr Lys Ser Phe Arg Thr Arg Arg Lys Leu Ala Asp Cys Ala Val Leu Val Glu Gln Ser Trp Trp Lys Leu Leu Asp Phe Ala Glu Leu Lys Arg Ser Ser Ile Ser Phe Phe Asp Ile Glu Lys His Glu Thr Ala Ile Ser Arg Trp Ser Arg Ala Arg Thr Arg Ala Ala Lys Val Gly Lys Gly Leu Ser Lys Asn Gly Lys Ala Gln Lys Leu Ala Leu Gln His Trp Leu Glu Ala Ile Asp Pro Arg His Arg Tyr Gly His Asn Leu His Phe Tyr Tyr Asn Lys Trp Leu His Cys Gln Ser Arg Glu Pro Phe Phe Tyr Trp Leu Asp Ile Gly Glu Gly Lys Glu Val Asn Leu Val Glu Lys Cys Pro Arg Leu Lys Leu Gln Gln Gln Cys Ile Lys Tyr Leu Gly Pro Met Glu Arg Lys Ala Tyr Glu Val Val Val Glu Asp Gly Lys Phe Phe Tyr Lys His Ser Gly Glu Ile Leu Gln Thr Ser Asp Met Glu Asp Ser Glu Ser Lys Trp Ile Phe Val Leu Ser Thr Ser Lys Val Leu Tyr Val Gly Lys Lys Lys Lys Gly Thr Phe Gln His Ser Ser Phe Leu Ala Gly Gly Ala Thr Val Ala Ala Gly Arg Leu Val Val Glu Asn Gly Val Leu Lys Ala Val Trp Pro His Ser Gly His Tyr Gln Pro Thr Glu Glu Asn Phe Met Asp Phe Leu Ser Phe Leu Arg Glu Asn Asp Val Asp Ile Thr Asp Val Lys Met Ser Pro Thr Asp Glu Asp Glu Phe Ser Ile Tyr Lys Gln Arg Ser Thr His Met Arg Asn His Ser Leu Glu Glu Asp Leu Glu Ala Glu Lys Thr Ile Ser Phe Gln Asp Lys Val Asp Pro Ser Gly Glu Glu Gln Thr Leu Met Arg Asn Glu Ser Ile Ser Arg Lys Gln Ser Asp Leu Glu Thr Pro Glu Lys Met Glu Ser Phe Ser Thr Phe Gly Asp Glu Ile Gln Ser Val Gly Ser Lys Ser Thr Lys Val Ser Glu Asp Tyr Asp Ser Gly Asp Asp Glu Glu Glu Glu Glu Glu Met Phe Glu Leu Glu Gln Glu Ser  Met Pro Ser Glu Gln Ser Ser Pro Arg Gly Glu Glu Lys Glu Glu Gly Glu Thr Lys Glu Ser Glu Val Val Lys Ile Thr Glu Glu Ser Ile Leu Lys Arg Ile Asn Ser Lys Lys Glu Thr Lys Ser Phe Gln Leu Gly Lys Gln Leu Ser Cys Lys Trp Thr Thr Gly Ala Gly Pro Arg Ile Gly Cys Val Arg Asp Tyr Pro Ser Glu Leu Gln Phe Gln Ala Leu Glu Gln Val Asn Leu Ser Pro Arg Ser Ala Ser Val Ser Arg Leu Cys Phe Ser Ser Ser Ser Gln Thr Gln Thr Pro Gln Met Ser Pro Leu Trp Arg Gly Met Ser Leu Pro Thr Asp Ile Thr Leu Thr Asn Ser。 

上述氨基酸序列经过1个或几个氨基酸残基的取代和/或缺失和或添加且与上述氨基酸序列具有相同功能的上述氨基酸序列衍生的蛋白质。 

所述拟南芥钙调素结合蛋白基因ATIQM2的基因序列为: 

atgggtgtatcattctcctgtccgttcgcagagcaagacgacgtggaagctgctctagactctgtcacggttaagtccataagctttggcgatgacgacgaatgcaaaactcctaagagatctgttaatttcaatgacggtactttagagcccacgattttgaaatctatgggatctggtaaaatggttgttgagaaatctgttagcttgaaagggatgcagctagagagaatgatctcacttaacaggtctgttaaagacaatggctttgagattgctaaagagttctcagttcttgatccgaggaatccgaaacacgaagctgctattaagttgcagaaggtttataagagctttcgtactagacgaaagctcgctgattgcgctgtgcttgttgagcagagctggtggaaacttttggattttgctgagttgaagagaagttctatatctttctttgatattgagaaacacgaaaccgcgatctcaaggtggtctagagcaagaactagagcagctaaagttggtaaaggtttgtcaaagaatggaaaagctcaaaagcttgctttacaacactggcttgaagcgattgacccgagacatcggtatggacacaacctgcacttttactacaacaaatggctccattgtcagagtagagaacctttcttctactggcttgatatcggcgaggggaaagaggtaaatcttgtggagaaatgtccgcggttgaaacttcaacaacagtgtatcaaataccttggtccgatggaaagaaaagcttatgaggtggttgtggaagacggcaaattcttctacaagcatagtggagagattcttcaaacttctgatatggaagatagtgaatccaaatggatttttgtgctaagcacatcgaaagtgttatacgtcgggaagaagaagaagggtacgtttcaacattcaagcttcttagctggaggagctactgttgctgcagggagattagttgttgagaatggtgttcttaaggctgtttgg ccacatagcggacattatcaacctacagaagagaatttcatggactttctctctttcctccgcgagaatgatgtcgatatcaccgatgtaaagatgagtcctacagatgaagatgaattctctatttacaaacagagaagcactcatatgagaaaccattctttagaagaggatttggaggctgagaagaccatttcctttcaagataaggttgatccaagtggagaagaacaaactctgatgagaaatgagtccatctcaagaaagcaaagcgatctcgagacaccggaaaagatggaatcatttagcacatttggcgatgaaatccaatccgtgggatcgaagtctacaaaagtatctgaagactacgattcaggtgacgatgaagaggaagaagaagagatgtttgagttagaacaagaatcaatgccttcagagcaaagctcacctagaggagaagaaaaagaagaaggagaaaccaaggagagtgaagtagtgaagataacagaagaatcaatcctaaaaaggatcaattcaaagaaggaaactaaatctttccaacttgggaaacaactatcatgcaaatggacaacaggtgcaggaccaagaatcggttgtgtaagagattatccatcagagcttcagtttcaagcactggaacaagtgaacttgtctccgagaagtgcttctgtttcaagactctgtttctcttcttcatcgcaaacgcaaacgcctcaaatgtcaccgttatggcgaggaatgtcactacctacagatatcacactcacgaattcataa 

限定的DNA序列具有90%以上的同源性,且编码相同功能蛋白的DNA分子。 

所述基因的编码序列的DNA分子来控制植物的开花时间。 

通过使用所述控制植物的开花时间的基因来控制植物的开花时间。 

开花时间通过在植物中过度表达拟南芥钙调素结合蛋白基因ATIQM2分子而被加速。 

开花时间通过抑制拟南芥钙调素结合蛋白基因ATIQM2的DNA分子的表达而被延迟。 

所述植物包括水稻、小麦、大麦、玉米、大豆、马铃薯、红豆、燕麦和粟等在内的粮食作物;包括拟南芥、大白菜、萝卜、辣椒、草莓、番茄、西瓜、黄瓜、卷心菜、甜瓜、西葫芦、韭菜、洋葱和胡萝卜等在内的蔬菜作物;包括人参、烟草、棉花、芝麻、甘蔗、甜菜、野生芝麻、花生和油菜籽等在内的经济作物;包括苹果、梨、枣、桃、称猴桃、葡萄、桔子、柿子、李子、杏和香蕉等在内的水果;包括玫瑰、剑兰、大丁草、康乃馨、菊花、百合和郁金香等 在内的花卉;和包括黑麦草、红三叶草、鸭茅、紫花首楷、高酥油草和多年生黑麦草等在内的饲料作物。 

在研究拟南芥中与控制开花时间的新基因时,本发明人发现了AtIQM2所编码蛋白AtIQM2在酵母和洋葱表皮细胞中能与钙调素ATCaM5结合蛋白(见图1),其突变体——iqm2-1和iqm2-2(见图2)均呈现出长日照(16h光照+8h黑暗)和短日照条件下(8h光照+16h黑暗)延迟开花的表型(见图3),说明ATIQM2是一个钙调素结合蛋白,具有促进植物开花的功能。因此,可通过基因工程手段,促进或抑制AtIQM2基因的表达,进而调节植物的开花时间。 

与现有技术相比,本发明的有益效果:既可通过加速植物开花在短时间内产生花和种子,还可通过延迟植物开花维持营养生长,改善植物有用部位(如叶片或茎)的生产效率。因此,本发明对农业生产具有重要意义。 

附图说明

图1为拟南芥ATIQM2基因的编码蛋白ATIQM2的钙调素结合分析结果图(其中,A)示ATIQM2蛋白与ATCaM5的酵母双杂交分析结果【左为完全培养基;右为营养缺陷培养基(有菌为阳性结果)】:1为pHybLex/Zeo空载体,阴性对照;1A为pHybLex/Zeo+pYESTrp2,阴性对照;1B为pHybLex/Zeo+pYESTrp2-IQM2,阴性对照;2A为pHybLex/Zeo-CaM5+pYESTrp2,阴性对照;2B为pHybLex/Zeo-CaM5+pYESTrp2-IQM2,样品检测;3C为pHybLex/Zeo-Fos2+pYESTrp2-Jun,阳性对照。B)示ATIQM2蛋白与ATCaM5的双分子荧光互补(BiFC)分析结果。上行图为荧光显微镜照片;下行图为与荧光观察相同材料的相差显微镜照片,箭头所指为细胞核。左(IQM2)为pSATN-nEYFP-IQM2+pSATN-cEYFP,阴性对照;中(CaM5)为pSATN-nEYFP+pSATN-cEYFP-CaM2,阴性对照;右(IQM2+CaM5)为pSATN-nEYFP-IQM2+pSATN-cEYFP-CaM2)。 

图2为拟南芥ATIQM2基因的插入突变体的鉴定结果图(其中,A)示拟南芥ATIQM2的结构及其突变体iqm2-1和iqm2-2的T-DNA和转座子的插入位点,iqm2-1的遗传背景为Columbia生态型;iqm2-2的遗传背景为Landsberg生态型。B)示ATIQM2基因的插入突变体的ATIQM2基因表达的RT-PCR检测结果。 途中1、2、3、4分别代表iqm2-1、iqm2-2、Columbia和Landsberg,M为DNA分子量标准。左图为管家基因β-ATPase的RT-PCR分析结果,电泳条带基本一致,说明所用RNA量一致;右图为突变体iqm2-1和iqm2-2及其相应的野生型的RT-PCR分析结果,在两个野生型能检测出而在两个突变体中未能检测出ATIQM2基因的表达产品——mRNA,说明iqm2-1和iqm2-2均为功能缺失突变体)。 

图3为拟南芥野生型与ATIQM2基因插入突变体在长日照(每天光照16小时,黑暗8小时)条件下开花表型的观察结果图(其中,A)示代表性植物的照片。B)示突变体iqm2-2及其野生型植株Landsberg的开花的时间进程。C)示开花时突变体iqm2-2及其野生型植株Landsberg的莲座叶数,叶片多表示迟开花)。 

具体实施方式

下面结合附图和实施例对本发明做进一步说明,但不是以任何形式限制本发明。 

下面结合具体实施例对本发明做进一步详细的描述,这些实施例只用来说明本发明,并不限制本发明的范围。 

实施例中所用的方法如无特别的说明,均为常规方法;所用材料如无特别的说明,均购自常规生化试剂公司;引物合成由宝生物工程(大连)有限公司完成,测序工作由华大基因科技服务有限公司完成。 

本发明所提供的ATIQM2基因的核酸序列如SEQ ID No:2(序列2)。ATIQM2基因编码的蛋白质,命名为ATIQM2蛋白质,其氨基酸序列如SEQ ID No:1(序列1)。 

实施例1拟南芥ATIQM2的钙调素结合活性分析 

生物信息学分结果显示,ATIQM2蛋白的N端含有1个IQ基序,因此可能是一个钙调素结合蛋白。为了探究ATIQM1蛋白是否具有钙调素结合特性,特进行如下所述的酵母双杂交实验和双分子荧光互补(BiFC)实验。 

一、酵母双杂交实验 

酵母双杂交实验是一种直观、快速地判断两个目标蛋白在酵母细胞中相互 作用的新技术,将待研究的两种蛋白质的基因分别克隆到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构域编码序列和GAL4激活结构域编码序列,构建成融合表达载体,从表达产物来分析两种蛋白质相互作用。 

首先,构建用于酵母双杂交实验的表达载体。 

其一,利用ATIQM2基因的带限制性酶切位点的特异引物ATIQM2-F1和ATIQM2-R1,对从拟南芥幼苗提取的总RNA进行RT-PCR扩增,得到两端分别具有BamH I和Not I的ATIQM2基因的CDS,外送测序公司;然后,将经过测序证实的ATIQM2基因的CDS通过BamH I/Not I位点定向克隆入用于酵母双杂交的捕获物(prey)载体pYESTrp2中。构建捕获物(prey)载体pYESTrp2所用ATIQM2基因的带限制性酶切位点的特异引物如下: 

ATIQM2-F1:5’-GGATCCATGGGTGTATCATTCTCCT3-3’ 

                BamH I 

ATIQM2-R1:5’-GCGGCCGCACTTCTCTTCAACTCAGC-3’ 

               Not I 

其二,利用ATCaM5基因的带限制性酶切位点的特异引物ATCaM5-F1和ATCaM5-R1,对从拟南芥幼苗提取的总RNA进行RT-PCR扩增,得到两端分别具有EcoR I和Not I的ATCaM5基因的CDS,外送测序公司;然后,将经过测序证实的ATCaM5基因的CDS通过EcoR I/Not I位点定向克隆入用于酵母双杂交的诱饵(bait)载体pHybLex/Zeo中。构建诱饵(bait)载体pHybLex/Zeo-CaM5所用的ATCaM5基因的带限制性酶切位点的特异引物如下: 

ATCaM5-F1:5’-CGCGAATTCATGGCAGATCAGCTCACCGATGATC-3’ 

                 EcoR I 

ATCaM5-R1:5’-AGAGCGGCCGCTCACTTTGCCATCATAACTTTGAC-3’ 

                   Not I 

其次,进行酵母双杂交实验。 

在完成上述两种载体的构建后,以pHybLex/Zeo-CaM5为诱饵,以pYESTrp2-IQM2为捕获物,将不同组合质粒分两步共转化感受态的酵母细胞L40, 经营养缺陷型筛选和抗生素的抗性筛选,得到含有两个转化质粒的酵母细胞,同时设置必要的阴性对照和阳性对照,进行ATIQM2蛋白和ATCaM5蛋白的酵母双杂交实验,结果如图1A所示。 

图2A左为含不同质粒组合的酵母细胞在完全培养基(YPAD)平板上的生长情况,结果显示各种组合均能正常生长,没有差异;图1A右为含不同质粒组合的酵母细胞在营养缺陷和显色平板(YC-WKUK)平板上的生长情况,结果显示各种阴性对照组合的酵母细胞不能生长。上述酵母双杂交实验的结果表明,ATIQM2在酵母中能与钙调素ATCaM5结合。 

二、双分子荧光互补(BiFC)实验 

尽管酵母双杂交实验结果显示ATIQM2在酵母中能与钙调素ATCaM5结合,但在植物细胞中ATIQM2未必能就与钙调素ATCaM5的结合。因此,进一步开展双分子荧光互补(BiFC)实验加以验证。 

BiFC是一种直观、快速地判断两个目标蛋白在活细胞中相互作用的新技术,是指两个不发光的荧光蛋白互补片段在与其融合蛋白质的相互作用的驱动下重新组装形成荧光复合物,恢复荧光特性。如果荧光蛋白活性恢复则表明两目标蛋白发生了相互作用。 

首先,构建用于BiFC实验的表达载体。 

其一,利用ATIQM2基因的带限制性酶切位点的特异引物ATIQM2-F2和ATIQM2-R2,对从拟南芥幼苗提取的总RNA进行RT-PCR扩增,得到两端分别具有Sal I和BamH I的ATIQM2基因的CDS,外送测序公司;然后,将经过测序证实的ATIQM2基因的CDS通过Sal I/BamH I位点定向克隆入用于BiFC的EYFP的N-端载体pSATN-nEYFP的nEYFP下游,生产融合蛋白nEYFP-IQM2。构建载体pSATN-nEYFP-IQM2所用ATIQM2基因的带限制性酶切位点的特异引物如下: 

ATIQM2-F2:5’-GTCGACATGGGTGTATCATTCTCCT3-3’ 

              SalI 

ATIQM2-R2:5’-GGATCCACTTCTCTTCAACTCAGC-3’ 

          BamH I 

其二,利用ATCaM5基因的带限制性酶切位点的特异引物ATCaM5-F2和ATCaM5-R2,对从拟南芥幼苗提取的总RNA进行RT-PCR扩增,得到两端分别具有EcoR I和Sal I的ATCaM5基因的CDS,外送测序公司测序;然后,将经过测序证实的ATCaM5基因的CDS通过EcoR I/Sal I位点定向克隆入用于BiFC的EYFP的C-端载体pSATN-cEYFP的cEYFP下游,生产融合蛋白cEYFP-CaM5。构建载体pSATN-cEYFP-CaM5所用ATIQM2基因的带限制性酶切位点的特异引物如下: 

ATCaM5-F2:5’-CGCGAATTCATGGCAGATCAGCTCACCGATGATC-3’ 

                  EcoR I 

ATCaM5-R2:5’-AGAGTCGACTCACTTTGCCATCATAACTTTGAC-3’ 

                  Sal I 

其次,进行BiFC实验。 

其一,大量制备2种对照空质粒pSATN-nEYFP和pSATN-cEYFP以及和2种构建的基因融合质粒pSATN-nEYFP-IQM2和pSATN-cEYFP-CaM2。其二,根据Helios Gene Gun System提供的方法制备用于基因枪转化的带有上述各种质粒的微粒子弹;其三,用基因枪将上述子弹,轰击进平铺在MS培养基平板表面黑暗下25℃培养16小时的洋葱鳞茎内表皮细胞内,继续在25℃黑暗培养;其四,培养16小时后,利用荧光显微镜对洋葱鳞茎内表皮细胞进行观察,实验结果显示,在蓝色激发光作用下,同一张表皮细胞中有多个洋葱表皮细胞产生出较强的荧光,而且荧光主要分布在细胞核(图1下右);但对照只有均匀、非常微弱的自发荧光(图1下左、中)。可见,ATIQM2和ATCaM2能够在植物细胞内结合。 

上述酵母双杂交和双分子荧光互补实验的结果都说明ATIQM2是1个钙调素结合蛋白。 

实施例2拟南芥ATIQM2突变体的鉴定 

T-DNA插入突变体iqm2-1(SALK-137935.25.90.x)种子购自ABRC(the Arabidopsis Biological Resource Center,Ohio State University,USA)。 转座子插入突变体iqm2-2(GT21916)种子由CSHL(Cold Spring Harbor Laboratory,New York on Long Island,USA)提供。ABRC提供的Salk T-DNA插入资料显示,iqm2-1的T-DNA反向插在ATIQM2的第1个外显子的+370bp处;TAIR(the arabidopsis information resource)iqm2-2的转座子DS5-4正向插入第1个外显子的+26bp处中(图2A)。据此,我们对相应片段进行了测序,结果证实确实如此。 

一般而言,从种子库中购买的种子有可能含有杂合子及野生型的植株,所以需要对所购种子进行分子标记鉴定,从中筛选出纯合子。 

将突变体iqm2-1和iqm2-2和相应野生型Columbia和Landsberg的种子消毒灭菌后分别接种在1/2MS固体培养基上,光下培养10天,随机取12株幼苗,利用Trizol试剂盒提取植物总RNA,然后用One-Step RT-PCR试剂盒进行扩增,所用引物如下: 

ATIQM2引物:其在基因的相应位置见图2A,预期产物长度为1815bp 

正向引物:ATGGGTGTATCATTCTCCTGTC 

反向引物:TTATGAATTCGTGAGTGTGATATC 

β-ATPase:预期产物长度为333bp 

正向引物:CTGAATCAATCTCTTAAGCTGCTG 

反向引物:GTGCAGAAAGTTCTACAGAACTAC 

将RT-PCR扩增产物进行琼脂糖凝胶电泳,结果如图2B所示。图2B左为突变体iqm2-1和iqm2-2及其相应的野生型中看家基因β-ATPase的RT-PCR分析结果,电泳条带大小与预期的333bp一致,每个条带的宽度和亮度基本一致,说明所用RNA量基本一致;图2B右为突变体iqm2-1和iqm2-2及其相应的野生型中ATIQM2基因的RT-PCR分析结果,在两个野生型(3和4)中能检测出ATIQM2基因的表达产品——mRNA,而在两个突变体(1和2)中未能检出所预期产品,说明iqm2-1和iqm2-2的ATIQM2基因因为外源DNA的插入而被破坏,成为功能缺失突变体,可以作为ATIQM2基因功能研究的材料。 

实施例3拟南芥AtIQM2参与开花调控的发现 

功能缺失突变体是进行基因功能分析的良好材料。本发明发明人鉴定获得了两个不同生态型的AtIQM2的功能缺失突变体iqm2-1和iqm2-2。为了进一步了解ATIQM2基因在植株生长发育过程中的作用,拟通过实验观察了突变体iqm2-1及其野生型Columbia以及iqm2-2及其野生型Landsberg的生长情况。 

将前述4种拟南芥种子用适量蒸馏水浸泡后,在4℃冰箱处理48小时,然后用70%乙醇浸泡30s,再用0.1%HgCl2消毒灭菌5分钟,最后用无菌水漂洗3次,播种至经过高温灭菌的营养土与蛭石比例为1︰1的土壤中,置于16小时光照/8小时黑暗的光周期、800mW/m2的光照强度、70-80%的相对湿度、22-24℃的温度条件下培养。每隔3天浇水一次,6天施肥一次。逐日观察各基因型植株的生长发育情况,最典型的差异是突变体与野生型的开花时间不同(图3A)。以本领域熟知的拟南芥花茎长度达1厘米时为开花标志,与野生型植株Columbia和Landsberg相比,突变体iqm2-1和iqm2-2晚开花2-3天,开花时植株的莲座叶数分别多1-2片或2-3片(图3)。因为两个不同生态型拟南芥的ATIQM2基因的功能缺失突变体iqm2-1和iqm2-2都显示出开花延迟的表型,说明ATIQM2基因所编码的蛋白ATIQM2具有促进开花的功能。 

以上详细描述了本发明的较佳具体实施例,应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明构思在现有技术基础上通过逻辑分析、推理或者根据有限的实验可以得到的技术方案,均应该在由本权利要求书所确定的保护范围之中。 

<110>  广州大学 

<120>  拟南芥钙调素结合蛋白基因ATIQM2在开花调节中的应用 

<160>  14 

<210>  1 

<211>  1815 

<212>  RNA 

<213>  未知 

<220> 

<223> 

<400>1 

Met Gly Val Ser Phe Ser Cys Pro Phe Ala Glu Gln Asp Asp Val Glu Ala Ala Leu Asp Ser Val Thr Val Lys Ser Ile Ser Phe Gly Asp Asp Asp Glu Cys Lys Thr Pro Lys Arg Ser Val Asn Phe Asn Asp Gly Thr Leu Glu Pro Thr Ile Leu Lys Ser Met Gly Ser Gly Lys Met Val Val Glu Lys Ser Val Ser Leu Lys Gly Met Gln Leu Glu Arg Met Ile Ser Leu Asn Arg Ser Val Lys Asp Asn Gly Phe Glu Ile Ala Lys Glu Phe Ser Val Leu Asp Pro Arg Asn Pro Lys His Glu Ala Ala Ile Lys Leu Gln Lys Val Tyr Lys Ser Phe Arg Thr Arg Arg Lys Leu Ala Asp Cys Ala Val Leu Val Glu Gln Ser Trp Trp Lys Leu Leu Asp Phe Ala Glu Leu Lys Arg Ser Ser Ile Ser Phe Phe Asp Ile Glu Lys His Glu Thr Ala Ile Ser Arg Trp Ser Arg Ala Arg Thr Arg Ala Ala Lys Val Gly Lys Gly Leu Ser Lys Asn Gly Lys Ala Gln Lys Leu Ala Leu Gln His Trp Leu Glu Ala Ile Asp Pro Arg His Arg Tyr Gly His Asn Leu His Phe Tyr Tyr Asn Lys Trp Leu His Cys Gln Ser Arg Glu Pro Phe Phe Tyr Trp Leu Asp Ile Gly Glu Gly Lys Glu Val Asn Leu Val Glu Lys Cys Pro Arg Leu Lys Leu Gln Gln Gln Cys Ile Lys Tyr Leu Gly Pro Met Glu Arg Lys Ala Tyr Glu Val Val Val Glu Asp Gly Lys  Phe Phe Tyr Lys His Ser Gly Glu Ile Leu Gln Thr Ser Asp Met Glu Asp Ser Glu Ser Lys Trp Ile Phe Val Leu Ser Thr Ser Lys Val Leu Tyr Val Gly Lys Lys Lys Lys Gly Thr Phe Gln His Ser Ser Phe Leu Ala Gly Gly Ala Thr Val Ala Ala Gly Arg Leu Val Val Glu Asn Gly Val Leu Lys Ala Val Trp Pro His Ser Gly His Tyr Gln Pro Thr Glu Glu Asn Phe Met Asp Phe Leu Ser Phe Leu Arg Glu Asn Asp Val Asp Ile Thr Asp Val Lys Met Ser Pro Thr Asp Glu Asp Glu Phe Ser Ile Tyr Lys Gln Arg Ser Thr His Met Arg Asn His Ser Leu Glu Glu Asp Leu Glu Ala Glu Lys Thr Ile Ser Phe Gln Asp Lys Val Asp Pro Ser Gly Glu Glu Gln Thr Leu Met Arg Asn Glu Ser Ile Ser Arg Lys Gln Ser Asp Leu Glu Thr Pro Glu Lys Met Glu Ser Phe Ser Thr Phe Gly Asp Glu Ile Gln Ser Val Gly Ser Lys Ser Thr Lys Val Ser Glu Asp Tyr Asp Ser Gly Asp Asp Glu Glu Glu Glu Glu Glu Met Phe Glu Leu Glu Gln Glu Ser Met Pro Ser Glu Gln Ser Ser Pro Arg Gly Glu Glu Lys Glu Glu Gly Glu Thr Lys Glu Ser Glu Val Val Lys Ile Thr Glu Glu Ser Ile Leu Lys Arg Ile Asn Ser Lys Lys Glu Thr Lys Ser Phe Gln Leu Gly Lys Gln Leu Ser Cys Lys Trp Thr Thr Gly Ala Gly Pro Arg Ile Gly Cys Val Arg Asp Tyr Pro Ser Glu Leu Gln Phe Gln Ala Leu Glu Gln Val Asn Leu Ser Pro Arg Ser Ala Ser Val Ser Arg Leu Cys Phe Ser Ser Ser Ser Gln Thr Gln Thr Pro Gln Met Ser Pro Leu Trp Arg Gly Met Ser Leu Pro Thr Asp Ile Thr Leu Thr Asn Ser 

<210>  2 

<211>  1818 

<212>  DNA 

<213>  未知 

<220> 

<223> 

<400>2 

atgggtgtatcattctcctgtccgttcgcagagcaagacgacgtggaagctgctctagactctgtcacggttaagtccataagctttggcgatgacgacgaatgcaaaactcctaagagatctgttaatttcaatgacggtactttagagcccacgattttgaaatctatgggatctggtaaaatggttgttgagaaatctgttagcttgaaagggatgcagctagagagaatgatctcacttaacaggtctgttaaagacaatggctttgagattgctaaagagttctcagttcttgatccgaggaatccgaaacacgaagctgctattaagttgcagaaggtttataagagctttcgtactagacgaaagctcgctgattgcgctgtgcttgttgagcagagctggtggaaacttttggattttgctgagttgaagagaagttctatatctttctttgatattgagaaacacgaaaccgcgatctcaaggtggtctagagcaagaactagagcagctaaagttggtaaaggtttgtcaaagaatggaaaagctcaaaagcttgctttacaacactggcttgaagcgattgacccgagacatcggtatggacacaacctgcacttttactacaacaaatggctccattgtcagagtagagaacctttcttctactggcttgatatcggcgaggggaaagaggtaaatcttgtggagaaatgtccgcggttgaaacttcaacaacagtgtatcaaataccttggtccgatggaaagaaaagcttatgaggtggttgtggaagacggcaaattcttctacaagcatagtggagagattcttcaaacttctgatatggaagatagtgaatccaaatggatttttgtgctaagcacatcgaaagtgttatacgtcgggaagaagaagaagggtacgtttcaacattcaagcttcttagctggaggagctactgttgctgcagggagattagttgttgagaatggtgttcttaaggctgtttggccacatagcggacattatcaacctacagaagagaatttcatggactttctctctttcctccgcgagaatgatgtcgatatcaccgatgtaaagatgagtcctacagatgaagatgaattctctatttacaaacagagaagcactcatatgagaaaccattctttagaagaggatttggaggctgagaagaccatttcctttcaagataaggttgatccaagtggagaagaacaaactctgatgagaaatgagtccatctcaagaaagcaaagcgatctcgagacaccggaaaagatggaatcatttagcacatttggcgatgaaatccaatccgtgggatcgaagtctacaaaagtatctgaagactacgattcaggtgacgatgaagaggaagaagaagagatgtttgagttagaacaagaatcaatgccttcagagcaaagctcacctagaggagaagaaaaagaagaaggagaaaccaaggagagtgaagtagtgaagataacagaagaatcaatcctaaaaaggatcaattcaaagaaggaaactaaatctttccaacttgggaaacaactatcatgcaaatggacaacaggtgcaggaccaagaatcggttgtgtaagagattatccatcagagcttcagtttcaagcactggaacaagtgaacttgtctccgagaagtgcttctgtttcaagactctgtttctcttcttcatcgcaaacgcaaacgcctcaaatgtcaccgttatggcgaggaatgtcactacctacagatatcacactcacgaattcataa 

<210>  3 

<211>  26 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>3 

5’-GGATCCATGGGTGTATCATTCTCCT-3’ 

<210>  4 

<211>  26 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>4 

5’-GCGGCCGCACTTCTCTTCAACTCAGC-3’ 

<210>  5 

<211>  34 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>5 

5’-CGCGAATTCATGGCAGATCAGCTCACCGATGATC-3’ 

<210>  6 

<211>  35 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>6 

5’-AGAGCGGCCGCTCACTTTGCCATCATAACTTTGAC-3’ 

<210>  7 

<211>  25 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>7 

5’-GTCGACATGGGTGTATCATTCTCCT-3’ 

<210>  8 

<211>  24 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>8 

5’-GGATCCACTTCTCTTCAACTCAGC-3’ 

<210>  9 

<211>  34 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>9 

5’-CGCGAATTCATGGCAGATCAGCTCACCGATGATC-3’ 

<210>10 

<211>33 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>10 

5’-AGAGTCGACTCACTTTGCCATCATAACTTTGAC-3’ 

<210>11 

<211>22 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>11 

ATGGGTGTATCATTCTCCTGTC 

<210>12 

<211>24 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>12 

TTATGAATTCGTGAGTGTGATATC 

<210>13 

<211>24 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>13 

CTGAATCAATCTCTTAAGCTGCTG 

<210>14 

<211>24 

<212>  DNA 

<213>  人工序列 

<220> 

<223> 

<400>14 

GTGCAGAAAGTTCTACAGAACTAC。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号