首页> 中国专利> 二次掩膜法制备二硼化镁超导约瑟夫森结的方法

二次掩膜法制备二硼化镁超导约瑟夫森结的方法

摘要

一种二次掩膜法制备二硼化镁超导约瑟夫森结的方法,该方法采用电子束在真空中对夹层式(三明治型)二硼化镁约瑟夫森结先驱膜进行退火。所述的夹层式二硼化镁约瑟夫森结先驱膜为采用二次掩膜法制备的[Mg/B]-X-[Mg/B]结构先驱膜,X代表标准导体层N或绝缘层I,在秒数量级的退火时间内使先驱膜中的镁、硼单质发生化学反应,最终生成MgB2-X-MgB2结构的SNS型或SIS型二硼化镁超导约瑟夫森结,S代表超导层。

著录项

  • 公开/公告号CN103904210A

    专利类型发明专利

  • 公开/公告日2014-07-02

    原文格式PDF

  • 申请/专利权人 中国科学院电工研究所;

    申请/专利号CN201410056684.7

  • 申请日2014-02-19

  • 分类号H01L39/24(20060101);

  • 代理机构11251 北京科迪生专利代理有限责任公司;

  • 代理人关玲

  • 地址 100190 北京市海淀区中关村北二条6号

  • 入库时间 2023-12-17 00:10:58

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-09-28

    授权

    授权

  • 2014-07-30

    实质审查的生效 IPC(主分类):H01L39/24 申请日:20140219

    实质审查的生效

  • 2014-07-02

    公开

    公开

说明书

技术领域

本发明涉及一种超导薄膜约瑟夫森结的制备方法。

背景技术

Josephone(约瑟夫森)结是超导弱电应用的关键,自从2001年1月日本Akimitsu等人 发现的临界转变温度为39K的二硼化镁超导体(Nature410(2001)63)以来,各国科学家对其 约瑟夫森结的制备产生了很大的兴趣,积极探索各种方法制备高质量MgB2超导约瑟夫森结。 MgB2具备较高的临界转变温度Tc,简单的结构,对传输电流透明的晶粒间界,弱的各向异 性和较长的相干长度(ξab(0)=3.7~12nm)。由于其临界温度远高于常规超导体,相干长度和 载流子浓度都比高温氧化物超导体有数量级的提高,因此,使得MgB2成为制备约瑟夫森结 较为理想的超导材料。

当前制备二硼化镁超导约瑟夫森结一般采用先在衬底上制备出底层二硼化镁超导薄膜, 然后在其上沉积势垒层,再在势垒层上沉积并制备出顶层二硼化镁超导薄膜,最终实现夹层 式(或三明治型)二硼化镁超导约瑟夫森结的制备。在制备过程中,由于超导薄膜的成膜温 度一般高于500℃,并且所需退火时间皆在数分钟到十几分钟以上,因而在制备约瑟夫森结 的整个退火过程中很难避免势垒层与超导层之间的成份扩散,退火时间越长则扩散越严重, 从而破坏隧道结的形成,使超导隧道结的制备面临很大的困难。因此如果能够在保证Mg、 B充分发生化学反应生成MgB2的基础上大幅度减小超导薄膜的退火时间,则会相对减少势 垒层与超导层之间的成份扩散,使得超导层/势垒层之间的界面更清晰,将会制备出更高质量 的二硼化镁超导约瑟夫森结。

文献“硅衬底MgB2—B—MgB2超导SNS约瑟夫森结的制备与特性”(柯一青、周迪帆、 刘珏、曾敏、朱红妹、张义邴,第31卷第2期,第166-167页,2009年5年)和中国专利 2011120328538.1“电子束退火制备二硼化镁超导约瑟夫森结的方法”都提出了二硼化镁超 导约瑟夫森结的制备工艺。

文献“硅衬底MgB2—B—MgB2超导SNS约瑟夫森结的制备与特性”利用两步原位电子 束蒸发技术,在Si(111)衬底上蒸镀[Mg/B]-B-[Mg/B]先驱膜,然后后退火的方式制备出了 MgB2-B-MgB2超导SNS约瑟夫森结。其制备工艺具体为:在UTT400超高真空镀膜仪中, 背景真空为1×10-7mbar的蒸镀条件下,Mg和B层按1:2原子比在Si衬底上交替获得[B(10nm) /Mg(15.1nm)]N共300nm厚的周期结构(N=12),作为底层MgB2的先驱膜;然后蒸镀一定厚 度的B层作为势垒层(B层度分别为5nm,10nm,20nm,30nm,50nm,80nm,100nm);随 后在B势垒层上按照相同工艺交替沉积[B(10nm)/Mg(15.1nm)]N共300nm厚的周期结构, 作为顶层MgB2的先驱膜。蒸镀完毕后,在1×102Pa的Ar气氛中,以625℃的温度原位退 火30分钟,制得MgB2超导薄膜SNS夹心结。

专利2011120328538.1的方法为:将制备好的夹层式二硼化镁约瑟夫森结先驱膜放置于 电子束退火设备中,调整电子束加速电压、束流和束斑直径,调整退火时间,进行快速退火, 制备出MgB2-X-MgB2结构的SNS型或SIS型二硼化镁超导约瑟夫森结,X代表标准导体层 N或绝缘层I。该专利使用的夹层式(或称三明治型)二硼化镁约瑟夫森结先驱膜结构为 [Mg/B]-X-[Mg/B]。[Mg/B]-X-[Mg/B]先驱膜的制备方法为:在衬底上先沉积出底层[Mg/B]先 驱膜,然后在其上沉积势垒层X,再在势垒层X上沉积顶层[Mg/B]先驱膜。X为标准导体 层N或绝缘层I,X层厚度依据不同的势垒层材料来确定。[Mg/B]先驱膜为[Mg(12nm) +B(8nm)]M多层膜,此结构式中,方括号中的内容表示先驱膜的每一周期结构由厚度为12nm 的Mg层和厚度为8nm的B层组成,即在衬底上沉积第一层Mg(12nm),再沉积第二层 B(8nm),每一周期结构的厚度为20nm;M为周期结构的周期数,为正整数,其值取决于所 需膜厚,例如:若先驱膜厚度为20nm,则M的取值为1;若先驱膜厚度为10000nm,则M 的值取500,以此类推。[Mg/B]先驱膜也可以为周期结构[Mg(15nm)+B(10nm)]M多层膜。

从文献“硅衬底MgB2—B—MgB2超导SNS约瑟夫森结的制备与特性”和专利 2011120328538.1的制备方法中可以看出,它们在制备[Mg/B]-X-[Mg/B]结构先驱膜时底层二 硼化镁先驱膜、中间势垒层和顶层二硼化镁先驱膜中有一部分的边沿是对齐的,这样容易造 成三层薄膜在对齐的边沿处互相扩散交错,连成一片,退火后就容易出现底层超导薄膜和顶 层超导薄膜连通的现象,难于制备成超导约瑟夫森结。

发明内容

本发明的目的是克服现有技术的缺点,提出一种采用二次掩膜法制备[Mg/B]-X-[Mg/B] 结构先驱膜并经电子束快速退火制备二硼化镁超导约瑟夫森结的方法。本发明通过改变中间 势垒层和顶层超导薄膜的尺寸大小,使得在制备先驱膜时底层二硼化镁先驱膜、中间势垒层 和顶层二硼化镁先驱膜的边沿无任何对齐处,并且三层薄膜尺寸依次减小,防止三层薄膜在 边沿处的互相扩散交错,避免退火后出现底层超导薄膜和顶层超导薄膜的连通现象。

本发明方法如下:

首先采用二次掩膜法制备出夹层式二硼化镁约瑟夫森结先驱膜,然后将制备好的先驱膜 放置于电子束退火设备中,调整电子束加速电压、束流和束斑直径,调整退火时间,进行快 速退火,在秒数量级的退火时间内使先驱膜中的镁、硼单质发生化学反应,制备出 MgB2-X-MgB2结构的SNS型或SIS型二硼化镁超导约瑟夫森结,X代表标准导体层N或绝缘层 I,S代表超导层。

本发明采用二次掩膜法制备的夹层式二硼化镁约瑟夫森结先驱膜,其结构为 [Mg/B]-X-[Mg/B],裸衬底为硅或碳化硅。

[Mg/B]-X-[Mg/B]先驱膜的制备方法为:在裸衬底上首先沉积出底层[Mg/B]先驱膜,然 后在底层[Mg/B]先驱膜上放上掩模版,沉积势垒层X,掩模版镂空部分的尺寸小于底层先驱 膜尺寸;再在势垒层X上放上另一掩模版,沉积顶层[Mg/B]先驱膜,此掩模版镂空部分的尺 寸小于势垒层薄膜尺寸。X为标准导体层N或绝缘层I,X层厚度依据不同的势垒层材料来确 定。[Mg/B]先驱膜为[Mg(12nm)+B(8nm)]M多层膜,此结构式中,方括号中的内容表示先驱 膜的每一周期结构由厚度为12nm的Mg层和厚度为8nm的B层组成,即在衬底上沉积第一层 Mg(12nm),再沉积第二层B(8nm),每一周期结构的厚度为20nm;M为周期结构的周期数, 为正整数,其值取决于所需膜厚,例如:若先驱膜厚度为20nm,则M的取值为1;若先驱膜 厚度为10000nm,则M的值取500,以此类推。[Mg/B]先驱膜也可以为周期结构[Mg(15nm) +B(10nm)]M多层膜。

本发明方法的具体步骤如下:

1.制备二硼化镁约瑟夫森结先驱膜

(1)制备底层二硼化镁先驱膜:

(1.1)将裸衬底固定在样品工件台上;

(1.2)将样品工件台放置于薄膜制备系统内;

(1.3)待薄膜制备系统内真空度达到10-5Pa数量级后,打开该薄膜制备系统的石英晶 体薄膜镀层控制仪;

(1.4)对裸衬底蒸镀先驱膜:按照周期结构[Mg+B]蒸镀先驱膜。在裸衬底上首先沉积 第一层B膜,在第一层B膜上沉积第二层Mg膜,然后在第二层Mg膜上再沉积第三层B 膜,在第三层B膜上沉积第四层Mg膜,以此类推,直至达到该层二硼化镁先驱膜所需厚度。

(1.5)待石英晶体薄膜镀层控制仪显示达到所需的二硼化镁先驱膜厚度后停止镀膜;

(1.6)将制备好的先驱膜取出,至此底层二硼化镁先驱膜制备完成;

(2)制备势垒层:

(2.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(1)制备的底层 二硼化镁先驱膜上,其中掩模版镂空部分的尺寸小于底层先驱膜尺寸;

(2.2)将样品工件台再次放置于薄膜制备系统内;

(2.3)待薄膜制备系统内真空度达到10-5Pa数量级后,打开该薄膜制备系统的石英晶 体薄膜镀层控制仪;

(2.4)按照设计厚度蒸镀势垒层;所述的厚度因势垒层材料不同而不同,一般在2~10 纳米之间;

(2.5)待石英晶体薄膜镀层控制仪显示达到所需的势垒层厚度后停止镀膜;

(2.6)将制备好的先驱膜取出,去掉掩模版,至此势垒层制备完成;

(3)制备顶层二硼化镁先驱:

(3.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(2)制备的势垒 层上,其中掩模版镂空部分的尺寸小于势垒层薄膜尺寸;

(3.2)将样品工件台再次放置于薄膜制备系统内;

(3.3)重复所述的步骤(1.3)~(1.5);

(3.4)将制备好的先驱膜取出,去掉掩模版,至此夹层式二硼化镁约瑟夫森结先驱膜制 备完成。

2.二硼化镁约瑟夫森结先驱膜退火

2.1将与步骤(1)中制备底层二硼化镁先驱膜使用的裸衬底材料相同、尺寸大小相同的 裸衬底放入到电子束加工设备样品室中的可移动工件台上,所述的裸衬底为未经沉积二硼化 镁薄膜的衬底。关闭样品室并启动真空泵,当样品室内的真空度高于1.0×10-2Pa时,继续下 一步骤的操作;

2.2选择电子束加速电压U:加速电压U可以在不高于40kV范围内任意选择,但前提条 件是被该电压加速后的电子在夹层式二硼化镁约瑟夫森结先驱膜中的有效穿透深度R必须不 小于先驱膜厚度,有效穿透深度R的值可使用下列公式进行估算,其中加速电压U的单位为 kV,R的单位为nm。

R=(461.98)×U1.75

2.3利用裸衬底进行电子束退火条件的摸索,即找到适宜的束斑、束流和退火时间。选 择电子束束流I和电子束束斑尺寸Φ:电子束束流I和束斑直径Φ应相结合进行调整, 使用尽可能小的束流来获得尽可能大的束斑尺寸,选择的原则是:能在工件上用肉眼看清楚 所述束斑,束斑的大小以完全覆盖或尽可能多地覆盖裸衬底为宜。

2.4确定退火时间:按照步骤2.2和步骤2.3选定的数值设定电子束加工设备的加速电压、 束流和束斑,由电子束加工设备的移动工件台将所述裸衬底移动到电子束束斑正下方位置, 启动电子束进行退火,记录裸衬底出现暗红和橘红色时的辐照时间t1和t2,则退火时间t 选择为t1≤t≤t2。所述的“暗红色”为“RAL工业国际标准色卡对照表”中的“RAL3007Black  red”颜色;所述的“橘红色”为“RAL工业国际标准色卡对照表”中的“RAL2001Red orange” 颜色;

2.5先驱膜退火:加速电压、束流、束斑和退火时间确定后,从样品室中取出裸衬底, 在样品室中放置裸衬底的位置放上二硼化镁超导约瑟夫森结先驱膜,用电子束照射所述的二 硼化镁超导约瑟夫森结先驱膜,照射时间为t,退火完成后,生成MgB2超导约瑟夫森结。

2.6若所述的夹层式二硼化镁约瑟夫森结先驱膜尺寸大于所述的束斑尺寸,则待被束斑 覆盖的先驱膜退火后,移动工件台,使所述的先驱膜未被束斑覆盖的部分移动到束斑正下方, 被电子束覆盖进行退火,直至整个先驱膜被退火生成MgB2超导约瑟夫森结。

本发明退火工艺可以在电子束焊接机、电子束退火机、电子束曝光机等电子束加工设备 中完成。

本发明与现有技术相比具有以下优点:

1、退火时间短:退火时间为秒数量级,可以有效减小势垒层与超导层之间的成份扩散;

2、退火效率高:本发明制备二硼化镁约瑟夫森结可以在秒数量级的退火时间内完成, 快速高效。同时利于减少势垒层与超导层之间的成份扩散,使得超导层/势垒层之间的界面更 清晰,有利于高质量二硼化镁超导约瑟夫森结的制备,降低制备成本。

3、夹层式二硼化镁约瑟夫森结先驱膜为采用二次掩膜法制备的[Mg/B]-X-[Mg/B]结构先 驱膜,可以有效防止三层薄膜在边沿处的互相扩散、连接,避免退火后出现底层超导薄膜和 顶层超导薄膜连通的现象。

4、升降温速度快:升降温速率可以高达108~109℃/s,从而在薄膜中形成特定的加热、 冷却过程。

5、电热转化效率高达90%以上,远高于激光10%的光热转化效率,环保、低碳。

附图说明

图1为选用不同电子束加速电压、不同束流和不同退火时间得到的二硼化镁超导约瑟夫 森结在15K温度下的直流I~V曲线,退火过程中样品室真空为3.0×10-3Pa;

图2为二次掩膜法制备二硼化镁约瑟夫森结先驱膜流程图,其中图2a为制备底层MgB2先驱膜,图2b放置势垒层掩模版,图2c制备势垒层,图2d放置顶层MgB2先驱膜掩模版, 图2e制备的夹层式二硼化镁约瑟夫森结先驱膜。

具体实施方式

实施例一

本实施例的先驱膜制备在ZZXS-500电子束镀膜机内完成,电子束退火在自制EBW-6型 电子束焊接机上进行。先驱膜结构为[Mg(15nm)+B(10nm)]6—B(8nm)—[Mg(15nm) +B(10nm)]5,先驱膜厚283nm,衬底SiC尺寸为10.0mm×3.0mm。

1、制备先驱膜

(1)制备底层先驱膜

(1.1)将尺寸为10.0mm×3.0mm的SiC裸衬底固定在样品工件台上;

(1.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(1.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(1.4)在SiC裸衬底上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后停止镀膜;

(1.5)在SiC裸衬底的B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.6)在SiC裸衬底的Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.7)重复步骤(1.5);

(1.8)重复步骤(1.6)~(1.7)4次;

(1.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm]6膜 厚150nm的底层二硼化镁先驱膜制备完成,如图2a所示。

(2)制备势垒层

(2.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(1)中制备的底 层二硼化镁先驱膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为8.0mm×2.0mm, 如图2b所示;

(2.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(2.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(2.4)在底层二硼化镁先驱膜上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数 字为后停止镀膜;

(2.5)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm]6— B(8nm)的底层二硼化镁先驱膜和势垒层制备完成,如图2c所示;

(3)制备上层二硼化镁先驱膜

(3.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(2)中制备的势 垒层薄膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为6.0mm×1.0mm,如图2d所 示;

(3.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(3.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(3.4)在势垒层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后 停止镀膜;

(3.5)在B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.6)在Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.7)重复步骤(3.5);

(3.8)重复步骤(3.6)~(3.7)3次;

(3.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm)]6—B(8nm)—[Mg(15nm)+B(10nm)]5膜厚283nm的二硼化镁约瑟夫森结先驱膜制备完成,如图 2e所示;

2、二硼化镁约瑟夫森结先驱膜退火

2.1将尺寸与步骤1的裸衬底大小相同的SiC裸衬底放置于电子束焊接机样品室中的可移 动工件台上,当样品室真空度高于1.0×10-2Pa时,继续如下操作;

2.2按照公式

R=(461.98)×U1.75

求出被10kV电压加速后的电子在先驱膜中的有效穿透深度R=1306nm,大于本次样品薄 膜的厚度283nm,故选择电子束加速电压U=10kV。

2.3选择束流I和束斑尺寸Φ:加载加速电压U=10kV,调整电子束束流I,同时调 整束斑直径Φ,当束流I=3.5mA、Φ=3.1mm时,电子束束斑清晰可见并能够完全覆盖先驱 膜的宽度范围。故选择I=3.5mA、Φ=3.1mm。

2.4确定退火时间:设置U=10kV、I=3.5mA、Φ=3.1mm,由移动工件台将裸衬底移动到 束斑正下方位置进行退火,当退火时间约为0.20s和0.40s时,裸衬底分别呈现暗红和橘红色。 据此选定退火时间t=0.30s。

2.5将先驱膜放置到电子束焊接机样品室中的可移动工件台上,设置U=10kV、I=3.5mA、 Φ=3.1mm。由于先驱膜的长度10.0mm大于束斑直径3.1mm,因此使移动工件台移动,使先 驱膜沿其长度方向以10mm/s的速度匀速通过束斑正下方,以保证先驱膜每一点的退火时间为 0.30s。退火后得到临界电流约为5.5mA的MgB2-B-MgB2超导SNS型约瑟夫森结,其直流V~I 曲线如图1中的B(8nm)曲线所示。

实施例二

本实施例的先驱膜制备在ZZXS-500电子束镀膜机内完成,电子束退火在自制EBW-6型 电子束焊接机上进行。先驱膜为[Mg(12nm)+B(8nm)]5—AlN(4nm)—[Mg(12nm)+B(8nm)]5, 先驱膜厚204nm,衬底SiC尺寸为10.0mm×3.0mm。

1、制备先驱膜

(1)制备底层先驱膜

(1.1)将尺寸为10.0mm×3.0mm的SiC裸衬底固定在样品工件台上;

(1.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(1.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(1.4)在SiC裸衬底上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后停止镀膜;

(1.5)在SiC裸衬底的B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.6)在SiC裸衬底的Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.7)重复步骤(1.5);

(1.8)重复步骤(1.6)~(1.7)3次;

(1.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm]5膜厚 100nm的底层二硼化镁先驱膜制备完成,如图2a所示;

(2)制备势垒层

(2.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(1)中制备的底 层二硼化镁先驱膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为8.0mm×2.0mm, 如图2b所示;

(2.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(2.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(2.4)在底层二硼化镁先驱膜上蒸镀AlN层,待石英晶体薄膜镀层控制仪显示面板上的 数字为后停止镀膜;

(2.5)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm)]5— AlN(4nm)]的底层二硼化镁先驱膜和势垒层制备完成,如图2c所示;

(3)制备上层二硼化镁先驱膜

(3.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(2)中制备的势 垒层薄膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为6.0mm×1.0mm,如图2d所 示;

(3.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(3.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(3.4)在势垒层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后停 止镀膜;

(3.5)在B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.6)在Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止镀 膜;

(3.7)重复步骤(3.5);

(3.8)重复步骤(3.6)~(3.7)3次;

(3.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm)]5— AlN(4nm)—[Mg(12nm)+B(8nm)]5膜厚204nm的二硼化镁约瑟夫森结先驱膜制备完成,如图 2e所示;

2、二硼化镁约瑟夫森结先驱膜退火

2.1将尺寸与步骤1的裸衬底大小相同的SiC裸衬底放置于电子束焊接机样品室中的可移 动工件台上,当样品室真空度高于1.0×10-2Pa时,继续如下操作;

2.2按照公式

R=(461.98)×U1.75

求出被20kV电压加速后的电子在先驱膜中的有效穿透深度R=4394nm,大于本次样品薄 膜的厚度204nm,故选择电子束加速电压U=20kV。

2.3选择束流I和束斑尺寸Φ:加载加速电压U=20kV,调整电子束束流I,同时调 整束斑直径Φ,当束流I=13.0mA、Φ=12.0mm时,电子束束斑清晰可见并能够完全覆盖先 驱膜的宽度范围。故选择I=13.0mA、Φ=12.0mm。

2.4确定退火时间:设置U=20kV、I=13.0mA、Φ=12.0mm,由移动工件台将裸衬底移动 到束斑正下方位置进行退火,当退火时间约为0.22s和0.26s时,裸衬底分别呈现暗红和橘红色。 据此选定退火时间t=0.24s。

2.5将先驱膜放置到电子束焊接机样品室中的可移动工件台上,移动工件台使先驱膜处 于束斑正下方,并完全被束斑覆盖。设置U=20kV、I=13.0mA、Φ=12.0mm、t=0.24s进行退 火。退火后得到临界电流约为7.5mA的MgB2-AlN-MgB2超导SIS型约瑟夫森结,其直流V~I 曲线如图1中的AlN(4nm)曲线所示。

实施例三

本实施例的先驱膜制备在ZZXS-500电子束镀膜机内完成,电子束退火在自制EBW-6型 电子束焊接机上进行。先驱膜为[Mg(12nm)+B(8nm)]5—Al2O3(5nm)—[Mg(15nm) +B(10nm)]3,膜厚180nm,衬底Si尺寸为10.0mm×3.0mm。

1、制备先驱膜

(1)制备底层先驱膜

(1.1)将尺寸为10.0mm×3.0mm的Si裸衬底固定在样品工件台上;

(1.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(1.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(1.4)在Si裸衬底上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后 停止镀膜;

(1.5)在Si裸衬底的B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.6)在Si裸衬底的Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.7)重复步骤(1.5);

(1.8)重复步骤(1.6)~(1.7)3次;

(1.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm]5膜厚 100nm的底层二硼化镁先驱膜制备完成,如图2a所示;

(2)制备势垒层

(2.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(1)中制备的底 层二硼化镁先驱膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为8.0mm×2.0mm, 如图2b所示;

(2.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(2.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(2.4)在底层二硼化镁先驱膜上蒸镀Al2O3层,待石英晶体薄膜镀层控制仪显示面板上 的数字为后停止镀膜;

(2.5)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm)]5— Al2O3(5nm)的底层二硼化镁先驱膜和势垒层制备完成,如图2c所示;

(3)制备上层二硼化镁先驱膜

(3.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(2)中制备的势 垒层薄膜上,其中掩模版尺寸为10.0mm×3.0mm,镂空部分的尺寸为6.0mm×1.0mm,如图2d所 示;

(3.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(3.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(3.4)在势垒层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后 停止镀膜;

(3.5)在B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.6)在Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.7)重复步骤(3.5);

(3.8)重复步骤(3.6)~(3.7)1次;

(3.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(12nm)+B(8nm)]5— Al2O3(5nm)—[Mg(15nm)+B(10nm)]3,膜厚180nm的二硼化镁约瑟夫森结先驱膜制备完成, 如图2e所示;

2、二硼化镁约瑟夫森结先驱膜退火

2.1将尺寸与步骤1的裸衬底大小相同的Si裸衬底放置于电子束焊接机样品室中的可移 动工件台上,当样品室真空度高于1.0×10-2Pa时,继续如下操作;

2.2同实施例二,选择U=20kV;

2.3选择I=2.5mA、Φ=8.0mm;

2.4选择退火时间t=0.32s;

2.5将先驱膜放置到电子束加工设备样品室中的可移动工件台上,设置U=20kV、 I=2.5mA、Φ=8.0mm。由于先驱膜的长度10mm大于束斑直径8.0mm,因此使移动工件台移 动,使先驱膜沿其长度方向以25mm/s的速度匀速通过束斑正下方,以保证先驱膜每一点的退 火时间为0.32s。退火后得到临界电流约为5.7mA的MgB2-Al2O3-MgB2超导SIS型约瑟夫森结, 其直流V~I曲线如图1中的Al2O3(5nm)曲线所示。

实施例四

本实施例的先驱膜制备在ZZXS-500电子束镀膜机内完成,电子束退火在自制EBW-6型 电子束焊接机上进行。先驱膜结构为[Mg(15nm)+B(10nm)]10—MgO(6nm)—[Mg(12nm) +B(8nm)]8,膜厚416nm,衬底SiC尺寸为10.0mm×10.0mm。

1、制备先驱膜

(1)制备底层先驱膜

(1.1)将尺寸为10.0mm×10.0mm的SiC裸衬底固定在样品工件台上;

(1.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(1.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(1.4)在SiC裸衬底上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后停止镀膜;

(1.5)在SiC裸衬底的B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字 后停止镀膜;

(1.6)在SiC裸衬底Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止镀膜;

(1.7)重复步骤(1.5);

(1.8)重复步骤(1.6)~(1.7)8次;

(1.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm)]10 膜厚250nm的底层二硼化镁先驱膜制备完成,如图2a所示;

(2)制备势垒层

(2.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(1)中制备的底 层二硼化镁先驱膜上,其中掩模版尺寸为10.0mm×10.0mm,镂空部分的尺寸为8.0mm×7.0mm, 如图2b所示;

(2.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(2.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(2.4)在底层二硼化镁先驱膜上蒸镀MgO层,待石英晶体薄膜镀层控制仪显示面板上 的数字为后停止镀膜;

(2.5)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm)]10—MgO(6nm)的底层二硼化镁先驱膜和势垒层制备完成,如图2c所示;

(3)制备上层二硼化镁先驱膜

(3.1)用弹簧片或耐高温胶带将具有微结构的镂空掩模版固定在步骤(2)中制备的势 垒层薄膜上,其中掩模版尺寸为10.0mm×10.0mm,镂空部分的尺寸为6.0mm×5.0mm,如图2d 所示;

(3.2)将样品工件台放置于ZZXS-500电子束镀膜机内,并开始抽真空;

(3.3)待真空度高于5×10-5Pa后,打开石英晶体薄膜镀层控制仪;

(3.4)在势垒层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字为后停 止镀膜;

(3.5)在B层上蒸镀Mg层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止 镀膜;

(3.6)在Mg层上蒸镀B层,待石英晶体薄膜镀层控制仪显示面板上的数字后停止镀 膜;

(3.7)重复步骤(3.5);

(3.8)重复步骤(3.6)~(3.7)6次;

(3.9)待真空室温度降至室温后取出样品工件台,至此结构为[Mg(15nm)+B(10nm)]10—MgO(6nm)—[Mg(12nm)+B(8nm)]8,膜厚416nm的二硼化镁约瑟夫森结先驱膜制备完成, 如图2e所示;

2、二硼化镁约瑟夫森结先驱膜退火

2.1将尺寸与步骤1的裸衬底大小相同的SiC裸衬底放置于电子束焊接机样品室中的可移 动工件台上,当样品室真空度高于1.0×10-2Pa时,继续如下操作;

2.2按照公式

R=(461.98)×U1.75

求出被40kV电压加速后的电子在先驱膜中的有效穿透深度R=14781nm,大于本次样品薄 膜的厚度416nm,故选择电子束加速电压U=40kV。;

2.3选择I=13.4mA、Φ=14.0mm;

2.4选择退火时间t=0.26s;

2.5将先驱膜放置到电子束加工设备样品室中的可移动工件台上,移动工件台使先驱膜 处于束斑正下方,并完全被束斑覆盖。设置U=40kV、I=13.4mA、Φ=14.0mm,t=0.26s进行 退火。退火后得到临界电流约为6.2mA的MgB2-MgO-MgB2超导SIS型约瑟夫森结,其直流 V~I曲线如图1中的MgO(6nm)曲线所示。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号