首页> 中国专利> 具有感测功能的半导体器件

具有感测功能的半导体器件

摘要

本发明涉及具有感测功能的半导体器件。一种半导体封装包括具有控制电极、第一负载电极和第二负载电极的功率半导体芯片。封装还包括电耦合到控制电极的第一端子导体、电耦合到第一负载电极的第二端子导体和电耦合到第二负载电极的第三端子导体。此外,封装包括电耦合到第一、第二和第三端子导体中的至少两个的温度传感器。

著录项

  • 公开/公告号CN103730453A

    专利类型发明专利

  • 公开/公告日2014-04-16

    原文格式PDF

  • 申请/专利权人 英飞凌科技股份有限公司;

    申请/专利号CN201310471596.9

  • 发明设计人 R.奥特伦巴;M.赛布特;

    申请日2013-10-11

  • 分类号H01L25/07;H01L23/48;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人王岳

  • 地址 德国瑙伊比贝尔格市坎芘昂1-12号

  • 入库时间 2024-02-19 23:36:50

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-10-03

    授权

    授权

  • 2014-05-14

    实质审查的生效 IPC(主分类):H01L25/07 申请日:20131011

    实质审查的生效

  • 2014-04-16

    公开

    公开

说明书

技术领域

本发明涉及封装技术,并且尤其涉及封装半导体芯片和感测其操作量(quantity)的技术。

背景技术

半导体器件制造商不断地努力增加它们产品的性能,同时减少它们的制造成本。在半导体器件的制造中成本密集区域是封装半导体芯片。如本领域技术人员知道的,集成电路在晶片上制造,然后其被单颗化以产生半导体芯片。随后,半导体芯片可以安装在导电载体(诸如引线框架)上。在许多情况中,期望监控半导体芯片的操作或性能。以低费用且可以监控器件操作地提供小部件尺寸的封装方法是合乎期望的。

因为这些和其它的原因,存在对本发明的需要。

附图说明

包括附图以提供对实施例的进一步理解并且合并附图到本说明书中以及构成本说明书的部分。附图图示实施例并与描述一起用来解释实施例的原理。将容易体会其它实施例和实施例的许多预期的优点,因为通过参考后面的详细描述它们变得更好理解。附图的元件不一定相对彼此按比例。相同的参考数字指定对应的相似部分。

图1示意地图示根据示例性实施例的半导体封装100的俯视图;

图2示意地图示根据示例性实施例的半导体封装200的俯视图;

图3示意地图示在图1中示出的半导体封装100的沿线A-A的剖视图;

图4示意地图示在图2中示出的半导体封装200的沿线A-A的剖视图;

图5示意地图示根据示例性实施例的连接到调制单元的半导体封装100的俯视图;

图6是示意地图示在电压控制信号上的电压感测信号的调制的图;

图7示意地图示根据示例性实施例的连接到调制单元的半导体封装300的俯视图;

图8是示意地图示在供应到封装的负载端子的电流上的电流感测信号的调制的图;

图9示意地图示根据示例性实施例的连接到调制单元、评估单元和控制单元的半导体封装100的俯视图;

图10示意地图示根据示例性实施例的连接到调制单元、评估单元和控制单元的半导体封装300的俯视图;以及

图11示意地图示根据示例性实施例的感测半导体封装的操作量的示例性方法。

具体实施方式

在后面,参考附图描述了本发明的实施例,其中通篇通常利用相同的参考数字指代相同的元件,并且其中各个结构不一定按比例绘制。在后面的描述中,为了解释的目的,阐述了许多特定的细节以提供对本发明实施例的一个或多个方面的全面的理解。然而,对于本领域技术人员来说可能明显的是,本发明实施例的一个或多个方面可以用这些特定的细节的更少程度来实践。因此后面的描述将不以限制的含义进行理解,并且本发明的范围由所附的权利要求限定。

应当理解的是,在这里描述的各个示例性实施例的特征可以彼此组合,除非另外特别说明。

如在这个说明书中采用的,术语“耦合”和/或“电耦合”不意图表示元件必须直接地耦合在一起;在“耦合”或“电耦合”的元件之间可以提供介入元件。然而,公开内容也应可选地包括这样的元件直接地连接或耦合在一起而没有介入元件提供在中间。

在这里描述了包含功率半导体芯片的器件。尤其可以涉及具有垂直结构的一个或多个功率半导体芯片,也就是说功率半导体芯片可以以这样的方式制造,使得电流能够以与功率半导体芯片的主表面垂直的方向流动。具有垂直结构的功率半导体芯片在其两个主表面上(也就是说在其顶面和底面上)具有电极。

功率半导体芯片(尤其垂直功率半导体芯片)可以例如配置为功率MOSFET(金属氧化物半导体场效应晶体管)、IGBT(绝缘栅双极晶体管)、JFET(结型栅场效应晶体管)、功率双极晶体管或功率二极管。通过示例的方式,功率MOSFET的源电极和栅电极可以定位在一个主表面上,而功率MOSFET的漏电极布置在另一个主表面上。半导体芯片不必由特定的半导体材料(例如Si、SiC、SiGe、GaAs)制造,并且而且可以包含不是半导体的无机和/或有机材料。半导体芯片可以是不同类型的并且可以由不同的技术制造。

(一个或多个)功率半导体芯片可以安装在载体上。载体可以是任何形状、尺寸或材料。在一个实施例中,载体可以是金属板或薄片,诸如例如引线框架的管芯垫。金属板或薄片可以是任何金属或金属合金,例如铜或铜合金。在其它实施例中,芯片载体可以由塑料或陶瓷制成。例如,芯片载体可以包括用金属层涂覆的塑料层。通过示例的方式,这样的芯片载体可以是单层PCB或多层PCB。PCB可以具有至少一个绝缘层和附着到绝缘层的结构化金属箔层。在其它的实施例中,芯片载体可以包括用金属层涂覆的陶瓷板。通过示例的方式,这样的芯片载体可以是DCB(直接铜接合)陶瓷基板。

下面描述的功率封装包括外部接触元件(在这里还称为端子导体)。端子导体可以是任何形状和尺寸。端子导体从封装的外侧是可接近的并且因此可以允许从封装外侧与(一个或多个)功率半导体芯片进行电接触。而且,端子导体可以是导热的并且可以用作散热器以散发由半导体芯片生成的热。端子导体(即外部接触元件)可以由任何期望的导电材料组成,例如由金属(诸如铜、铝或金)、金属合金或导电有机材料组成。功率封装可以是有引线或无引线封装。端子导体可以是有引线封装的引线或无引线封装的外露导体。具体地说,端子导体可以是引线框架的引线或外露导体。

(一个或多个)(封装)功率半导体芯片可以至少部分地被包围或嵌入在至少一个电绝缘材料中。电绝缘材料可以形成密封体。密封体可以包括模制材料或由模制材料制成。可以采用各种技术以形成模制材料的密封体,例如压缩模制、注射模制、粉末模制或液体模制。而且,密封体可以具有一片层的形状,例如层压在(一个或多个)功率半导体芯片和(一个或多个)载体的顶部上的一片薄片或箔。密封体可以形成封装的外围的部分,即可以至少部分地限定半导体器件的形状。

电绝缘材料可以包括热固性材料或热塑性材料或者由热固性材料或热塑性材料制成。热固性材料可以例如在环氧树脂的基础上制成。热塑性材料可以例如包括下列的组中的一个或多个材料:聚醚酰亚胺(PEI)、聚醚砜(PES)、聚苯硫醚(PPS)或聚酰胺-酰亚胺(PAI)。热塑性材料通过在模制或层压期间施加压力和热而融化并且(可逆地)在冷却和压力释放时硬化。

形成密封体的电绝缘材料可以包括聚合物材料或由聚合物材料制成。电绝缘材料可以包括下列的至少一个:填充或非填充模制材料、填充或非填充热塑性材料、填充或非填充热固性材料、填充或非填充层压材料、纤维增强层压材料、纤维增强聚合物层压材料、和具有填充粒子的纤维增强聚合物层压材料。

图1示意地图示了包括半导体芯片10的半导体封装100,半导体芯片10具有控制电极11和位于例如第一表面13上的第一负载电极12和位于例如与第一表面13相对的第二表面15上的第二负载电极14。因为图1示出了半导体封装100的俯视图,所以半导体芯片10的第二负载电极14和第二表面15是不可见的。

而且,半导体封装100包括电耦合到控制电极11的第一端子引线16、电耦合到第二负载电极14的第二端子引线17、和电耦合到第一负载电极12的第三端子引线18。如在图1中描绘的,第二端子引线17可以布置在第一和第三端子引线16和18之间。

半导体芯片10可以安装在载体19上。载体19可以包括平面金属板(例如引线框架的管芯垫)或由其制成。在其它的实施例中,载体19可以包括在其上表面上被金属层涂覆的塑料板或陶瓷基板或由在其上表面上被金属层涂覆的塑料板或陶瓷基板制成。如果半导体芯片具有垂直结构,则第二负载电极14可以电耦合到载体19。如在图1中示出的,第二引线端子17可以电耦合到载体19。

半导体芯片10可以配置为功率晶体管,例如功率MOSFET、IGBT、JFET或功率双极晶体管。在功率MOSFET或JFET的情况中,第一负载电极12是源电极,第二负载电极14是漏电极,并且控制电极11是栅电极。在IGBT的情况中,第一负载电极12是发射电极,第二负载电极14是集电电极,并且控制电极11是栅电极。在功率双极晶体管的情况中,第一负载电极12是发射电极,第二负载电极14是集电电极,并且控制电极11是基电极。

在操作期间,在第一和第二负载电极12、14之间可以施加高于5、50、100、500或1000V的电压。施加到控制电极11的切换频率可以在从1kHz到100MHz的范围中,但是也可以在这个范围之外。

半导体封装100可以包括温度传感器30。温度传感器30可以例如是二极管。如在图1中例示的,温度传感器30可以在半导体芯片10外部。温度传感器30可以是封装的部分。

第一导体20可以将第一端子引线16电连接到温度传感器30的第一电极。第二导体21可以将温度传感器30的第一电极电连接到半导体芯片10的控制电极11。温度传感器30的第二电极通过例如载体19可以电连接到第二端子引线17。第三导体22可以将第三端子引线18电连接到半导体芯片10的第一负载电极12。通常,温度传感器30电耦合到第一、第二和第三端子引线16、17、18的至少两个。

半导体封装100可以包括密封体40。密封体40可以部分地或完全地嵌入载体19、半导体芯片10、温度传感器30以及第一、第二和第三导体20、21、23。具体地说,第一、第二和第三导体20、21、23可以例如被完全地嵌入密封体40中,即它们可以不暴露在密封体40处以形成半导体封装100的端子。而且,通过示例的方式,半导体芯片10在其侧面和顶面可以被密封体40完全地嵌入。第一、第二和第三端子引线16、17、18突出密封体40之外并且因此形成半导体封装100的外部接触元件。

图2示意地图示半导体封装200,半导体封装200包括与半导体封装100的部件类似或同样的部件。因此半导体封装100和200的类似或同样的部件用相同的参考数字表示。因此,为了避免重复,参考对半导体封装100的上面的公开内容。

在导体封装200中,温度传感器30集成在半导体芯片10中。通过示例的方式,与图1中类似,温度传感器30可以是连接在第一端子引线16和尤其连接到载体19的第二端子引线17之间的二极管。

图3图示半导体封装100的沿线A-A的剖视图。如从图3显而易见的,温度传感器30在半导体芯片10外部。温度传感器30的第一电极由参考数字31表示并且温度传感器30的第二电极由参考数字32表示。通过示例的方式,温度传感器30可以是二极管。那么参考数字31可以指定二极管的阳极并且参考数字32可以指定二极管的阴极。

如在图3中图示的,温度传感器30和半导体芯片10可以被完全地嵌入密封体40中。在其它示例中,密封体40可以具有将密封体40的顶部连接到第三导体22的通孔(未示出)。布置在密封体40顶部的散热器(未示出)可以经由通孔而热耦合到第三导体22。第三导体22可以是能够承载如针对功率半导体封装所指定的电流的接触夹或一个或多个接合线。

图4图示图2的半导体封装200的沿线A-A的剖视图。再次,为了避免重复,参考上面的描述。在半导体封装200中,温度传感器30集成在半导体芯片10中。通过示例的方式,温度传感器30可以是二极管。在那种情况下,连接到第二导体21的上电极31可以是二极管的阳极,并且可以耦合到半导体芯片10的第二负载电极14的底电极32可以是二极管的阴极。

参照图5,调制单元50可以电耦合到第一端子引线16。调制单元50配置为在供应到第一端子引线16的控制信号51上调制感测信号。

在控制信号51上调制的感测信号可以具有比控制信号51的频率高的频率。

通过示例的方式,参照图6,控制信号51是控制电极11(例如栅电极)和第一负载电极12(例如源电极)之间的电压Vgs。Vgs控制半导体芯片10的切换操作。控制信号51的切换周期ΔTs可以在例如1ms到10μs的范围中。

参考数字52指定在控制信号51上调制的感测信号52。感测信号52可以是周期性信号。在图6中,感测信号是电压信号。感测信号52的频率可以例如是控制信号51的频率的十到百或甚至千倍。因此调制周期ΔTm可以在100μs到10甚至1ns之间的范围中。感测信号52的幅值可以比控制信号51的幅值显著地小。通过示例的方式,感测信号52的幅值可以小于用于启动功率半导体芯片10的切换操作的控制信号51的(电压)幅值的五分之一、十分之一或甚至百分之一。

温度传感器30的导电率依赖于其温度。因此,流过第二和第三端子引线17、18的电流不仅依赖于半导体芯片10的切换操作而且依赖于温度传感器30的瞬时温度。类似地,在第三端子引线18的暴露端处的电压依赖于温度传感器30的温度,因为温度传感器30的温度引起控制电极11和第二负载电极14之间的电压(例如栅-漏电压)。更具体地说,在温度传感器30处的温度越高,控制电极11和第一电极12之间的电压越低。这引起半导体芯片10被驱动得更靠近截止区。

通过使用叠加在控制信号51上的感测信号52的调制频率解调例如在第三端子引线18(的暴露端)处测量的电压,可以感测这个效应。那样,在不需要添加另外的端子引线(或管脚)到封装100用于温度感测目的的情况下,可以评估温度传感器30的温度。换句话说,在不增加封装100的端子引线(管脚)的数量的情况下,可以实施感测功能。

为了导出温度信息的感测信号调制技术已针对图1的半导体封装100的示例在图5中图示。不用说,相同的技术可以应用到图2的半导体封装200。因此,为了避免重复,对半导体封装100的上面的公开内容类似地可应用到如在图2中图示的半导体封装200。

另外,在控制信号51上叠加或调制电压感测信号以获得感测信息的技术可以概括为对负载信号53调制或叠加电流感测信号以获得感测信息而不需要额外的端子引线(管脚)的技术。对应的示例在图7中图示。这里,调制单元50耦合到半导体芯片10的负载电极,经由例如第二端子引线17和例如载体19耦合到例如第二负载电极14。

参照图8,负载信号53可以由流过例如第二端子引线17的电流(例如漏-源电流Ids)给出。如在图8中示出的,通过叠加更高频率和更小幅值的电流感测信号52来调制这个电流信号53。对图7的公开内容(涉及电压调制)近似地应用到图示电流调制的图8,并且参考图7以避免调制频率、切换频率、幅值比率等的重复。

回到图7,调制单元50可以以与图5中的调制单元50类似的方式操作,然而,除了叠加在负载信号53上的感测信号52是电流信号而不是电压信号。因此,如果调制单元50用于提供调制的负载信号给封装100或200,则温度的评估可以与上面参考图5解释的类似。

再另外,在控制信号51或负载信号53上叠加或调制电压或电流感测信号52的技术可以概括为获得关于除温度之外的其它和/或额外量的感测信息而不需要额外的端子引线(管脚)。在图7中,通过示例的方式,另一个感测量而不是温度应当被评估。因此,半导体封装300可以不具有温度传感器。更确切地说,第一端子引线16可以经由第四导体23直接耦合到控制电极11。这里,上面描述的技术可以可应用于获得关于其它感测量(诸如例如在第一负载电极12处的电压)的信息。应当注意的是,由于在第一负载电极12和第三端子引线18的末端之间发生(未知的)电压降,所以在第一负载电极12处的电压不同于在第三端子引线18的末端处的电压。由于那个原因,常规的功率封装有时装备有额外的(第四)端子引线以感测在第一负载电极12处的电压。

图9图示如下器件,该器件包括如例如由半导体封装100例示的半导体封装、生成控制信号51的控制单元70、如上面描述的在控制信号上调制感测信号52的调制单元50和评估感测量诸如例如温度或芯片电极(诸如例如第一负载电极12)的电压的评估单元60。评估单元60经由线61电耦合到第三端子引线18的暴露端。评估单元60可以输出指示评估结果(例如温度或电极电压)的评估信号62。评估信号62可以馈送到控制单元70中。控制单元70可以操作为使用评估信号62作为反馈信息的调节器。也就是说,控制信号51可以基于评估信号62变化。

通过示例的方式,如在图9中示出的,如果电压感测信号52用于将电压调制施加到第一端子引线16,则评估单元60可以配置为评估电压输入(例如在第三端子引线18处经由线61获得的电压)以例如导出温度信息。在第三端子引线处的电压摆幅可以响应于温度并且使用例如高通滤波器或为解调所施加的调制器50的调制频率来解调。然后评估信号62指示温度。控制单元70可以根据温度改变控制信号51。那样,通过示例的方式,可以实施过载保护。

关于图9,分流电阻器80可以可选地与第三端子引线18串联连接。分流电阻器80两端的电压降可以馈送到评估单元60。这个电压降可以使用例如高通滤波器或在调制单元50中施加的调制频率来解调。那样,也可以评估由叠加在控制信号51上的电压感测信号52引起的电流响应。电流响应的评估可以例如用于导出在第一负载电极12处的电压。然后评估信号62可以指示在第一负载电极12处的电压。在第一负载电极12处的电压的反馈允许控制单元70提供在期望的操作点更精确地驱动半导体芯片10的控制信号51。因此,通过第一负载电极12电压反馈可以改进总体性能。

应当注意的是,评估信号62也可以包括组合的温度和电压信息。在这个情况中,控制单元70配置为鉴于温度和第一负载电极电压信息而控制该控制信号51。

应当注意的是,线61和分流电阻器80也可以连接到第二端子引线17而不是第三端子引线18。

图10图示关于如何将调制技术应用于功率晶体管切换操作优化的另一个示例。这里,通过示例的方式,使用没有温度传感器的封装300。调制单元50执行如结合图7和8所描述的电流调制。评估单元60可以配置为测量和评估分流电阻器80两端的电压降。另外,评估单元60可以配置为测量和评估在第三端子引线18处的如经由线61接收的电压。

评估单元60输出指示在第一负载电极12处的电压的评估信号62。评估信号62被提供给控制单元70的输入。控制单元70基于可由评估信号62得到的电压信息来改变控制信号51。

通常,通过使用上面描述的感测信号调制技术,可以获得多个感测量诸如温度和在负载电极处的电极电压。通常,感测信号可以是电压信号或电流信号。感测信号可以在控制电压(例如栅电压)上或在负载电流信号(例如源和/或漏电流)上被调制。使用解调或滤波技术的评估可以使用在第二或第三端子引线17、18处测量的电压和/或电流。可以评估功率封装或半导体芯片10的温度和/或在负载电极12、14处的电压。可以幅值调制或频率调制感测信号52。此外,可以使用模拟或数字调制的感测信号52。

在上面描述的所有实施例中,半导体封装100、200、300可以(准确地)具有三个端子引线16、17、18而不需要额外的感测引线。这允许客户保持应用板的常规的“三管脚”电路布局而不放弃用温度和/或电极电压反馈模式控制功率半导体芯片10的功能。

参考图11描述了感测操作量(诸如例如功率半导体芯片或功率封装的温度或功率半导体芯片的电极电压)的示例性方法。在S1,在供应给半导体封装的控制端子导体的控制信号上或在供应给半导体封装的负载端子导体的负载信号上调制感测信号。感测信号可以具有分别地比控制信号的频率或负载信号的频率高的频率。

在S2,通过解调响应于感测信号的负载信号贡献来评估在半导体封装的负载端子导体处的负载信号输出。例如可以通过高通滤波或通过混合解调信号与感测信号或将解调信号与感测信号相关联来执行解调。因此,由控制信号51或负载信号53的操作变化引起的输出负载信号的贡献可以与由叠加的感测信号52引起的输出负载信号贡献相区分。

方法可以涉及通过评估输出负载信号确定温度和/或方法可以涉及通过评估输出负载信号确定负载电极电压。方法不限于确定功率封装或功率半导体芯片的温度和/或负载电极电压。对于本领域技术人员显而易见的是,依赖于所使用的传感器,也可以使用在这里描述的原理来检测其它量诸如例如热电阻或电流。

此外,所确定的量可以被利用于改进封装操作的控制。为了那个目的,所确定的量可以被反馈到控制单元以引起控制信号51。通过示例的方式,可以改变幅值、占空比(接通时间对切换周期ΔTs的百分比)或切换周期ΔTs以例如将所确定的量(例如温度、电极电压)调节到最优值。

尽管在这里已图示并描述了特定的实施例,但是本领域普通技术人员将体会到的是,在不脱离本发明范围的情况下,各种替代的和/或等价的实施方式可以替代示出并描述的特定实施例。这个申请旨在覆盖在这里讨论的特定实施例的任何适应或改变。因此,本发明旨在仅由权利要求及其等价物所限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号