公开/公告号CN103761674A
专利类型发明专利
公开/公告日2014-04-30
原文格式PDF
申请/专利权人 林兴志;广西感知物联网生产力促进中心;
申请/专利号CN201410039692.0
申请日2014-01-27
分类号G06Q50/02(20120101);
代理机构45114 广西南宁汇博专利代理有限公司;
代理人邓晓安
地址 530007 广西壮族自治区南宁市大学东路105号广西经济管理干部学院计算机系
入库时间 2024-02-19 23:32:30
法律状态公告日
法律状态信息
法律状态
2016-11-23
授权
授权
2014-06-04
实质审查的生效 IPC(主分类):G06Q50/02 申请日:20140127
实质审查的生效
2014-04-30
公开
公开
技术领域
本发明涉及一种农作物生长期的告警及干预方法,尤其涉及了一种利用遥感技术、传感器技术和数学建模技术的基于遥感与海量气候信息的农作物生长期告警与干预方法。
背景技术
遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。遥感能够从远距离感知目标反射或自身辐射的电磁波、可见光、卫星云图、红外线,对目标进行探测和识别。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。遥感技术在国民经济和军事的很多方面均已获得广泛的应用。
农业遥感是利用遥感技术进行农业资源调查,土地利用现状分析,农业病虫害监测,农作物估产等农业应用的综合技术。其将遥感技术与农学各学科及其技术结合起来,为农业发展服务。主要应用有利用遥感技术进行土地资源调查,土地利用现状调查,农作物长势的监测与分析,病虫害的预测,以及农作物的估产等。农业是当前遥感应用的最大用户之一。
现有的农业遥感对农作物的长势、虫害、估产等方面做了非常详细的研究且成果不少,但大多是单纯地对遥感图像进行分析,利用植被指数进行判断。而气候变化对农作物的生长也有较大的影响,结合遥感和气候的双重因素来对农作物的成长进行监控显然更加科学和全面。此外,监测的目的是为了及时发现问题,找到影响农作物生长的不利因素并尽可能采取措施进行干预,以使农作物能够获得最好的生长环境。因此在结合遥感和气候信息对农作物生长期进行监测的基础上增加告警与干预功能就显得尤为必要。
发明内容
本发明的目的在于针对现有技术应用领域的空白和功能不够全面的不足,提供了一种使用方便、安全可靠的基于遥感与海量气候信息的农作物生长期告警与干预方法。
为了实现上述目的,本发明采用了以下技术方案:
一种基于遥感与海量气候信息的农作物生长期告警与干预方法,是通过遥感技术、传感器技术、数学建模技术结合历史遥感信息与历史气候信息建立农作物生长期告警模型,进而实现远程监控农作物生长并进行告警与干预的方法;包括以下步骤:
步骤一,在远程管理中心平台上建立农作物生长期监测告警系统,该系统包括数据服务器、遥感信息接收模块、光谱分析模块、告警建模模块和干预方案生成模块;在农作物种植区域铺设农作物生长期干预系统;
步骤二,采集基础数据并传输给数据服务器进行存储,所述的基础数据包括通过遥感信息接收模块从遥感卫星地面接收站获取的农作物种植区的历史遥感信息和从农作物种植区所在地的气象站获取的气候信息;同时,光谱分析模块对历史遥感信息进行分析处理,提取出与农作物生长期相关联的信息数据(如AVI(距平植被指数)、NDVI(归一化差值植被指数)等等),并存储到数据服务器中;
步骤三,告警建模模块读取数据服务器中相应的基础数据进行分析处理,然后建立告警模型并存储到数据服务器中,所述的告警模型包括干旱告警模型、虫害告警模型和长势告警模型;
步骤四,根据构建好的干旱告警模型、虫害告警模型和长势告警模型,制定出相对应的干预方案,并将干预方案存储到数据服务器中;(干预方案可以由农业专家根据构建好的三个告警模型预先制定好)
步骤五,建立好告警模型和干预方案后,开始远程监控农作物生长并进行告警及干预:
(1)采集实时数据并存储于数据服务器中,所述的实时数据包括通过遥感信息接收模块从遥感卫星地面接收站获取的农作物种植区的当前遥感信息和气象站提供的实时气象信息与未来一天内的预告信息;同时,光谱分析模块对遥感信息进行图像分析和光谱分析,提取出与农作物生长期相关联的信息数据,并存储到数据服务器中;
(2)干预方案生成模块读取(1)中的实时数据和数据服务器中的告警模型,将当前遥感信息和实时气候信息与未来一天内的预告信息输入到告警模型中,经过模型的分析处理和比对,得出当前的农作物长势状态报告,当农作物长势状态报告的结论为出现干旱、虫害或长势问题时,及时发出告警信息,将告警信息与数据服务器中的干预方案进行匹配,生成最优干预方案并传输给农作物生长期干预系统;
(3)农作物生长期干预系统接收到最优干预方案后,启动干预,按照最优干预方案给农作物补充适当的水分、养分、肥料和农药。(干预方案里面包括了灌溉方式、实施干预的时间、施用水分、养分等配比等等。)
作为本发明的进一步优化改进,在农作物种植区域还铺设有地面传感系统;所述的地面传感系统在最优干预方案实施完毕后获取土壤和农作物的实时数据,并回传给农作物生长期监测告警系统,农作物生长期监测告警系统接收后将进行干预效果分析,进一步改进数据服务器中的干预方案。
作为本发明的进一步说明,以上所述农作物生长期监测告警系统的数据服务器设有气候信息库、遥感信息库、告警模型库和干预方案库;所述的气候信息库存储气候信息,包括天气状况信息、气候变化信息、昼夜温差信息、降雨量信息和光照量信息;所述的遥感信息库存储遥感信息,包括遥感信息接收模块接收的原始遥感信息、经过光谱分析模块分析处理后提取出来的与农作物生长期相关联的信息数据;所述的告警模型库存储告警模型,包括干旱告警模型、虫害告警模型和长势告警模型;所述的干预方案库存储由农业专家根据告警模型预先制定好的干预方案。
作为本发明的进一步说明,以上所述的气候信息分为历史信息、实时信息和预告信息。
作为本发明的进一步说明,以上所述的光谱分析模块采用的分析方法包括光谱空间分析法、特征空间分析法和混合像元分解法。
作为本发明的进一步说明,以上所述告警建模模块采用的分析建模方法主要有微分方程法、差分方程法、数据拟合法、线性规划法、非线性规划与动态规划法和概率统计法。
作为本发明的进一步说明,以上所述的农作物生长期干预系统根据最优干预方案将水分、养分、肥料和农药进行搭配后采用地面灌溉、喷灌或微灌方式实施干预。
作为本发明的进一步说明,以上所述地面传感系统获取的实时数据包括土壤监测数据和植被监测数据;所述的土壤监测数据包括土壤PH值、土壤温度、土壤湿度、土壤农药残留信息和土壤养分留存信息;所述的植被监测数据包括农作物表面温度、表面湿度、虫害状况和光照度。
作为本发明的进一步说明,以上所述农作物生长期监测告警系统和农作物生长期干预系统均分别设有通信模块,用于传输信息数据。
作为本发明的进一步说明,以上所述的通信模块设有无线通讯天线和/或有线通讯接口,农作物生长期监测告警系统和农作物生长期干预系统以无线通讯方式或有线通讯方式进行传输信息数据。
本发明中遥感信息接收模块负责接收高光谱遥感原始影像信息,并将信息传送给光谱分析模块。光谱分析模块首先对高光谱遥感影像进行分类监测,采用光谱空间分析法、特征空间分析法、混合像元分解法、分层分区图像分类法、多时相分析方法和多源数据结合法等将影像中的特征数据提取出来。对特征数据进行分析可以识别出目标类别。通过对原始波段进行各种代数运算能够得到各种光谱信息和植被指数,主要包括AVI(距平植被指数)、NDVI(归一化差值植被指数)、RVI(比值植被指数)、PVI(垂直植被指数)、DVI(差异植被指数)、GVI(绿度植被指数)、SAVI(土壤调节植被指数)、DVIEVI(差值环境植被指数)、VCI(条件植被指数)、TCI(条件温度指数)、NDTI(归一化温度指数)、VTCI(条件植被温度指数)和GVMI(全局植被湿度指数)等。分析出来的数据和结果存入遥感信息库中。
本发明中气候数据库中的数据通过监测地所在当地气象站获取得到,主要包括天气状况、降雨量、光照度、温度、昼夜温差等,分为历史数据、实时数据和预报数据三个类别。
本发明中的告警建模模块以遥感信息和海量历史气候信息为依据,建立干旱告警模型、虫害告警模型和长势告警模型,并存入告警模型库中。告警模型的分析处理过程如下:将模型所需的各项输入参数代入模型中的数学函数中,经过函数的四则运算、条件运算得出初步预测值,若该值与模型中预设的预测值范围出入太大,则通过误差修正对输入参数进行微调,再次送入模型进行处理,反复迭代直到结果值在合理的范围之内。
本发明中干旱告警模型建立过程如下: 通过对VCI、TCI、NDTI、VTCI等指数的多时段对比,能够获得地表温度变化与干旱程度的关系;分析GVMI的变化与短期的气候变化之间的关系,能够获得气候变化对农作物植被含水量的影响程度;利用电磁波散射模型由雷达回波的后向散射系数推导出土壤介电常数,根据土壤介电常数分析出土壤的含水量。将上述四种影响因子(土壤含水量、植被含水量、地表温度和气候信息)结合起来,使用数据拟合法等多种建模方法,建立干旱告警模型。一旦实时信息数据通过模型的分析处理得到干旱发生的程度过高,随即发出干旱告警。
本发明中虫害告警模型建立过程如下:根据遥感影像分类监测,获取地块中的农作物种类信息,并根据该类别农作物健康时的典型光谱特征绘制特征曲线。当病虫害发生时,农作物会遭到一定程度的破坏,细胞活性降低,叶子的色素发生变化,导致可见光区的吸收谷不明显,反射峰变低,近红外光区的峰值变低。因此通过将实时光谱特征曲线与健康时的光谱特征曲线相比较,若实时曲线特征被拉平的程度越大,说明虫害发生的程度越严重。此外,采用影像分类法、影像差技术和植被指数VID技术监测农作物的失叶量,结合海量历史气候信息,与虫害的发生类别、程度进行聚类拟合,建立失叶量、气候与虫害的分析模型。
本发明中长势告警模型建立过程如下:根据农作物的品种信息得到该作物的各个生长期持续时间,并针对各生长期农作物的正常状态建立基础模型,模型参数包括植被覆盖率、叶面含水量、光谱特征曲线和各植被指数的正常取值范围等。通过各生长期的海量历史遥感数据与基础模型进行比对,提取出大量非正常状态的数据信息,并与当时的气候变化特征进行比较分析,找出非正常参数与气候的影响关系,建立告警模型。若实时的气候预报通过模型的分析处理得到即将会对农作物的长势造成很大影响的结论,即发出告警。
本发明中干预方案库由大量农业专家结合各种告警信息,根据不同的情况制定各种干预措施。主要从改善土壤环境入手,如及时灌溉水分能缓解气候因素所带来的干旱问题,对农作物进行农药喷洒能够解决虫害问题,对土壤施加肥料、养分能够使农作物长势更好。而水、养分、肥料和农药的具体施用量和搭配比例,则由方案中具体指定。
本发明中农作物生长期干预系统负责实施干预方案。根据干预方案的具体要求,配置好水、养分、肥料和农药的比例,按指定的时间和方式实行灌溉。灌溉方式分为地面灌溉、喷灌和微灌。地面灌溉包括畦灌、沟灌、淹灌和漫灌,微灌溉技术包括微喷灌、滴灌、渗灌等。
本发明中地面传感系统由分布在各个地块中的传感器构成,用于监测干预过后的土壤状况和农作物状况,为改进干预方案提供参考数据。所用的传感器包括土壤湿度传感器、土壤温度传感器、土壤PH值传感器、植被温度传感器、植被湿度传感器、光照度传感器等。
本发明的优点:
1.利用遥感技术对农作物生长进行监测,能够从作物长势、土壤状况、虫害状况等方面进行全面分析,且监视范围广,能够实现24小时无间断监测。
2.结合海量历史气候信息,更全面地分析出造成遥感监测结果的原因所在,并能在此基础上根据气候预报提前采取干预措施,降低气候变化的不利影响,使农作物的生长环境维持在一个较好、较稳定的状态。
3.采用了不同的告警模型,满足各个时期、各种气候条件和不同虫害的表现差异。
4.采用地面灌溉、喷灌、微灌三种干预方式,干预方案由系统自动生成,能够根据需要搭配水、养分、肥料和农药的比例,更有效解决问题,减少人工成本。
5.采用地面传感系统对实施干预后的土壤和农作物状况进行跟踪监测,反馈的信息用于对干预效果进行评估,能够促进干预方案的改进,使系统进入良性循环的轨道。
附图说明
图1是本发明的系统结构框架示意图。
图2是本发明的告警模型库组织结构图。
图3是本发明进行农作物生长期告警与干预流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明,但本发明的保护范围不限于以下实施例。
实施例:
如1-3所示,一种基于遥感与海量气候信息的农作物生长期告警与干预方法,是通过遥感技术、传感器技术、数学建模技术结合历史遥感信息与历史气候信息建立农作物生长期告警模型,进而实现远程监控农作物生长并进行告警与干预的方法;包括以下步骤:
步骤一,在远程管理中心平台上建立农作物生长期监测告警系统,该系统包括数据服务器、遥感信息接收模块、光谱分析模块、告警建模模块和干预方案生成模块;在农作物种植区域铺设农作物生长期干预系统和地面传感系统;
步骤二,采集基础数据并传输给数据服务器进行存储,所述基础数据包括通过遥感信息接收模块从遥感卫星地面接收站获取的农作物种植区的历史遥感信息和从农作物种植区所在地的气象站获取的气候信息;同时,光谱分析模块对历史遥感信息进行分析处理,提取出与农作物生长期相关联的信息数据,并存储到数据服务器中;
步骤三,告警建模模块读取数据服务器中相应的基础数据进行分析处理,然后建立相应的告警模型并存储到数据服务器中,告警模型包括干旱告警模型、虫害告警模型和长势告警模型;
步骤四,根据构建好的干旱告警模型、虫害告警模型和长势告警模型,制定出相对应的干预方案,并将干预方案存储到数据服务器中;
步骤五,建立好告警模型和干预方案后,开始远程监控农作物生长并进行告警及干预:
(1)采集实时数据并存储于数据服务器中,所述的实时数据包括通过遥感信息接收模块从遥感卫星地面接收站获取的农作物种植区的当前遥感信息和气象站提供的实时气象信息与未来一天内的预告信息;同时,光谱分析模块对遥感信息进行图像分析和光谱分析,提取出与农作物生长期相关联的信息数据,并存储到数据服务器中;
(2)干预方案生成模块读取(1)中的实时数据和数据服务器中的告警模型,将当前遥感信息和实时气候信息与未来一天内的预告信息输入到告警模型中,经过模型的分析处理和比对,得出当前的农作物长势状态报告,当农作物长势状态报告的结论为出现干旱、虫害或长势问题时,及时发出告警信息,并将告警信息与数据服务器中的干预方案进行匹配,生成最优干预方案并传输给农作物生长期干预系统;
(3)农作物生长期干预系统接收到最优干预方案后,启动干预,按照最优干预方案给农作物补充适当的水分、养分、肥料和农药;
(4)干预完毕,地面传感系统获取土壤和农作物的实时数据,回传给农作物生长期监测告警系统,农作物生长期监测告警系统接收后将进行干预效果分析,进一步改进数据服务器中的干预方案。
以上所述农作物生长期监测告警系统的数据服务器设有气候信息库、遥感信息库、告警模型库和干预方案库;所述的气候信息库存储气候信息,包括天气状况信息、气候变化信息、昼夜温差信息、降雨量信息和光照量信息,并且这些信息均分为历史信息、实时信息和预告信息三类;所述的遥感信息库存储遥感信息,包括遥感信息接收模块接收的原始遥感信息、经过光谱分析模块分析处理后提取出来的有用的与农作物生长期相关联的信息数据。
所述的光谱分析模块采用的分析方法有光谱空间分析法、特征空间分析法和混合像元分解法。所述告警建模模块采用的分析建模方法主要有微分方程法、差分方程法、数据拟合法、线性规划法、非线性规划与动态规划法和概率统计法。
所述的农作物生长期干预系统根据干预方案将水、养分、肥料和农药进行合理搭配后采用地面灌溉、喷灌或微灌方式实施干预。所述地面传感系统获取的实时数据包括土壤监测数据和植被监测数据;所述的土壤监测数据包括土壤PH值、土壤温度、土壤湿度、土壤农药残留信息和土壤养分留存信息;所述的植被监测数据包括农作物表面温度、表面湿度、虫害状况和光照度。
所述农作物生长期监测告警系统和农作物生长期干预系统均分别设有通信模块;通信模块设有无线通讯天线和/或有线通讯接口,农作物生长期监测告警系统和农作物生长期干预系统以无线通讯方式或有线通讯方式进行传输信息数据。
实例一:
系统定期从遥感卫星获取遥感影像信息,对其进行农作物识别、土壤含水量分析、植被含水量分析和地表温度分析,结合实时的气候信息和预报信息,使用干旱模型进行分析处理,判断当前农作物是否处于干旱状态,并给出干旱程度指数。若干旱指数超过警戒值,则需告警。在干预方案库中找到与旱情匹配的干预方案,启动农作物干预系统实施干预。干预后启动地面传感系统监测土壤状况和植被状况并回传数据,通过干预效果的分析评估,进一步改进干预方案。
实例二:
系统定期从遥感卫星获取遥感影像信息,对其进行农作物识别、光谱特征曲线绘制和农作物失叶量分析,结合实时的气候信息和预报信息,使用虫害模型进行分析处理,判断当前农作物是否有病虫害,并给出虫害严重程度指数。若虫害指数超过警戒值,则需告警。在干预方案库中找到与虫害情况相匹配的干预方案,启动农作物干预系统实施干预。干预后启动地面传感系统监测土壤状况和植被状况并回传数据,通过干预效果的分析评估,进一步改进干预方案。
实例三:
系统定期从遥感卫星获取遥感影像信息,对其进行农作物识别、生长期判定、植被覆盖率分析和植被叶绿素含量分析,结合实时的气候信息和预报信息,使用生长期模型进行分析处理,判断当前农作物长势是否正常,并给出长势指数。若长势指数超过警戒值,则需告警。在干预方案库中找到与告警情况相匹配的干预方案,启动农作物干预系统实施干预。干预后启动地面传感系统监测土壤状况和植被状况并回传数据,通过干预效果的分析评估,进一步改进干预方案。
机译: 基于低空遥感信息的无人机农作物产量预测方法及系统
机译: 用于种植至少一种农作物的设备包括可移位的农作物支撑物和运输系统,用于在生长期间连续且分阶段地将农作物支撑物移动通过该设备
机译: 基于遥感的农作物作物系数和蒸发蒸腾估算方法及系统