首页> 中国专利> 虚拟隔离单桩法检测既有结构物下高承台桩完整性的方法

虚拟隔离单桩法检测既有结构物下高承台桩完整性的方法

摘要

本发明公开了虚拟隔离单桩法检测既有结构物下高承台桩完整性的方法。本发明具体包括如下步骤:步骤1.数据的采集;步骤2.通过虚拟隔离单桩法分析采集到的数据;步骤3.判断高承台桩完整性。具体通过在受测基桩上部沿桩身纵向选取间隔一定距离的两个位置进行激振,利用实测阻抗函数结合虚拟隔离单桩法计算两个位置以下单桩桩顶的阻抗函数,进而分析桩身的完整性。本发明能在不破坏上部结构和桩身的情况下,完全消除上部结构对桩身完整性检测的影响,使得待测桩从复杂结构中“隔离”出来,对隔离后的单桩问题容易参照传统的机械阻抗法、反射波法或其他分析方式进行分析评价,大大降低了问题的难度,提高了检测结果可靠性。

著录项

  • 公开/公告号CN103774701A

    专利类型发明专利

  • 公开/公告日2014-05-07

    原文格式PDF

  • 申请/专利权人 浙江大学;

    申请/专利号CN201410007774.7

  • 申请日2014-01-07

  • 分类号E02D33/00(20060101);

  • 代理机构33200 杭州求是专利事务所有限公司;

  • 代理人杜军

  • 地址 310027 浙江省杭州市西湖区浙大路38号

  • 入库时间 2024-02-19 23:23:46

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-16

    授权

    授权

  • 2014-06-11

    实质审查的生效 IPC(主分类):E02D33/00 申请日:20140107

    实质审查的生效

  • 2014-05-07

    公开

    公开

说明书

技术领域

本发明涉及既有结构物下高承台桩完整性检测技术,具体涉及一种虚拟隔 离单桩法检测既有结构物下高承台桩完整性的方法。

背景技术

高承台桩基础是桥梁、码头等工程中常见的基础形式,近年来,世界各国 自然灾害频发,在每次较大规模的灾害如破坏性地震、滑坡、海啸发生后,受 灾地区的很多桥梁、码头会遭到不同程度的破坏和损伤,这些破坏和损伤不仅 发生在桥梁及码头上部的结构物中,同时也会发生在下部的基础部分。另一方 面,由于桥梁、码头桩这类高承台桩基础的部分桩身出露于地表,容易遭受人 为事故的破坏和损伤,例如车辆、船舶撞击及爆炸冲击等。在这些自然灾害或 人为事故发生后,需对其安全性进行检测评估,而高承台桩基础的大部分桩身 位于地下(水下),具有隐蔽性和复杂性,其检测评估相对上部结构物的评价而 言,具有更高的难度和技术要求。

基桩质量常规检测手段包括单桩静载荷试验、低应变反射波法、声波透射 法、钻孔取芯法四类,采用常规检测方法时通常要求桩顶为自由端,而对于在 役的高承台桩,常规方法很难操作。此外,针对既有建筑物基桩检测的旁孔透 射波法,检测时,需要在桩侧附近钻孔且每根桩需要检测数十甚至数百个测点, 其检测效率相对较低,成本较高,不适用于较大面积的质量普查,特别是对于 水上的码头及桥梁桩,实际操作较难,对于较长的桩,钻孔倾斜将导致不可靠 的测试结果。

因此研究一种能在不损坏上部结构和桩身的前提下,有效消除上部结构对 测试结果的影响,将复杂结构系统下的基桩转化到单桩测试模式下进行检测分 析的方法,对灾后桥梁、码头等建构筑物基础安全性能的准确客观评定有着较 大的现实意义。

发明内容

本发明的目的是针对现有技术的不足,提供一种虚拟隔离单桩法检测既有 结构物下高承台桩完整性的方法,即不损坏基桩和上部结构物,就能检测出基 桩完整性的方法。

本发明解决其技术问题所采用的技术方案如下:

步骤1.数据的采集;

步骤2.通过虚拟隔离单桩法分析采集到的数据;

步骤3.判断高承台桩完整性。

步骤1所述的数据的采集具体如下:

1-1.在受测基桩的地基土之上的桩身选取一定间隔的两个位置作为检测位 置,分别为上部位置和下部位置;激振设备通过导线连接至动态数据采集和分 析仪;激振设备内置有力传感器,且该力传感器为采样触发器;

1-2.在上部位置对应的桩侧对称的安装两个加速度传感器,且加速度传感 器通过导线连接至动态数据采集和分析仪;在其中一个加速度传感器对应的上 部位置处安装激振平台;

1-3.用激振设备在激振平台上激振,采样触发器被触发后,由两个加速度 传感器采集上部位置处的加速度信号,同时激振设备内的力传感器拾取激振力 信号,然后将加速度信号和激振力信号p传递给动态数据采集和分析仪进行同 步显示和存储;

1-4.将上部位置对应的桩侧对称安装的两个加速度传感器和激振平台,以 同样的方式安装在下部位置,将加速度传感器通过导线连接至动态数据采集和 分析仪;然后重复步骤1-3;

1-5.对上部位置和下部位置采集到的信号的质量进行分析:

若上部位置或下部位置处,两个加速度传感器采集到的加速信号吻合程度 差异较大,则调整激振位置对上部位置或下部位置重复采集;若波形出现异常 导致无法判别采样质量好坏,则多次采集并存储。

所述上部位置距承台底面的距离大于1.5m。

步骤2所述的通过虚拟隔离单桩法分析采集到的数据,具体如下:

2-1.将采集的加速度信号积分转换为速度信号v;

2-2.计算上部位置或下部位置以下桩段顶阻抗函数;

根据在上部位置和下部位置分别激振采集的速度信号v和激振力信号p,计 算得到相应检测位置的实测阻抗函数:

其中,DFT表示离散傅里叶变换;

根据上部位置和下部位置处的实测阻抗函数,计算上部位置和下部位置以 下桩段顶阻抗函数:

Z1(ω)=Z1A(ω)+Z1B(ω)Z2(ω)=Z2A(ω)+Z2B(ω)Z1A(ω)=i·Z·ω·tan(L·ωC-arctan(i·Z2A(ω)Z))Z2B(ω)=i·Z·ω·tan(L·ωC-arctan(i·Z1B(ω)Z))

其中,Z1(ω)为上部位置处的实测阻抗函数;Z2(ω)为下部位置处的实测阻抗 函数;为上部位置以下桩段顶阻抗函数;为下部位置以下桩段顶阻抗 函数;为上部位置以上桩段及上部结构在上部位置处的阻抗函数;为 下部位置以上桩段及上部结构在下部位置处的阻抗函数;Z为上部位置和下部位 置之间桩段的截面力学阻抗;L为上部位置和下部位置的距离;C为上部位置和 下部位置之间桩段的一维纵向应力波传播速度;ω为圆频率;i为虚数单位;

2-3.计算检测位置以下桩段顶的速度导纳和其在模拟半正弦脉冲激振力激 振后得到的反射波曲线;

2-3-1.通过步骤2-2得到的和分别计算上部位置和下部位置以 下桩段顶的速度导纳;

2-3.2.获取检测位置以下桩段顶在模拟半正弦脉冲激振力激振后得到的反 射波曲线:

分别根据上部位置和下部位置以下桩段顶速度导纳计算上部位置和下部位 置以下桩段顶在模拟半正弦脉冲激振力激振后得到的反射波曲线:

反射波曲线=IDFT[速度导纳×FT(模拟半正弦脉冲激振力)]

其中,IDFT表示离散傅里叶逆变换,FT表示傅里叶变换。

步骤3所述的判断高承台桩完整性,具体如下:

通过速度导纳根据机械阻抗法判定高承台桩检测位置以下桩身的完整性; 或通过反射波曲线根据反射波法判定高承台桩检测位置以下桩身的完整性。

所述激振设备为纵向激振设备、扭转激振设备或横向激振设备,采用纵向 激振设备时,采集的加速度信号应为检测位置处桩身的纵向加速度信号,采集 的激振力信号应为纵向激振力信号;采用横向激振设备时,采集的加速度信号 应为检测位置处桩身的水平加速度信号,采集的激振力信号应为横向激振力信 号;采用扭转激振设备时,采集的加速度信号应为检测位置处桩身的水平切向 加速度信号,采集的激振力信号应为扭转激振力信号。

本发明的有益效果是:

(1)本方法能在不破坏上部结构和桩身的情况下,完全消除上部结构对桩 身完整性检测的影响,使得待测桩从复杂结构中“隔离”出来,对隔离后的单 桩问题容易参照传统的导纳法、反射波法或其他分析方式进行分析评价,大大 降低了问题的难度,提高了检测结果可靠性;

(2)不需要钻孔等复杂施工,操作简单方便,经济成本较低,同时不会对 在役基桩产生损伤,能够在需要大量普查的工程中推广采用;

(3)高承台桩(如桥梁、码头桩)的部分桩身暴露在地面(水面)以上, 特别适合于采用本方法进行测试分析,对于其他既有结构物下的低承台桩基, 如果通过在桩身周围开挖,使其一部分桩身侧面暴露,也可以采用上述方法进 行检测和评价。

附图说明

图1为本发明检测结构示意图;

图中,上部位置1、下部位置2、加速度传感器3、承台4、导线5、动态数 据采集和分析仪6、激振设备(内置力传感器)7、受测基桩8、地基土9、相邻 基桩10、激振平台11。

具体实施方式

以下结合说明书附图对本发明方法作进一步说明:

步骤1.数据的采集;

步骤2.通过虚拟隔离单桩法分析采集到的数据;

步骤3.判断高承台桩完整性。

步骤1所述的数据的采集具体如下:

1-1.在受测基桩8的地基土9之上的桩身选取一定间隔的两个位置作为检 测位置,分别为上部位置1和下部位置2;激振设备7通过导线5连接至动态数 据采集和分析仪6;激振设备7内置有力传感器,且该力传感器为采样触发器;

1-2.在上部位置1对应的桩侧对称的安装两个加速度传感器3,且加速度传 感器3通过导线5连接至动态数据采集和分析仪6;在其中一个加速度传感器对 应的上部位置1处安装激振平台11;

1-3.用激振设备7在激振平台11上激振,采样触发器被触发后,由两个加 速度传感器采集上部位置1处的加速度信号,同时激振设备内的力传感器拾取 激振力信号,然后将加速度信号和激振力信号p传递给动态数据采集和分析仪6 进行同步显示和存储。

1-4.将上部位置1对应的桩侧对称安装的两个加速度传感器3和激振平台 11,以同样的方式安装在下部位置2,将加速度传感器3通过导线5连接至动态 数据采集和分析仪6;然后重复步骤1-3;

1-5.对上部位置1和下部位置2采集到的信号的质量进行分析,

若上部位置1或下部位置2处,两个加速度传感器采集到的加速信号吻合 程度差异较大,则调整激振位置对上部位置1或下部位置2重复采集;若波形 出现异常导致无法判别采样质量好坏,则多次采集并存储。

所述上部位置1距承台4底面的距离大于1.5m,这是为了使该位置处桩身 接近一维振动状态,保证测试结果的准确性。

所述的步骤2通过虚拟隔离单桩法分析采集到的数据,具体如下:

2-1.将采集的加速度信号积分转换为速度信号v;

2-2.计算上部位置1或下部位置2以下桩段顶阻抗函数;

根据在上部位置1和下部位置2分别激振采集的速度信号v和激振力信号p, 计算得到相应检测位置(上部位置1或下部位置2)的实测阻抗函数:

其中,DFT表示离散傅里叶变换;

根据上部位置1和下部位置2处的实测阻抗函数,计算上部位置1和下部 位置2以下桩段顶阻抗函数:

Z1(ω)=Z1A(ω)+Z1B(ω)Z2(ω)=Z2A(ω)+Z2B(ω)Z1A(ω)=i·Z·ω·tan(L·ωC-arctan(i·Z2A(ω)Z))Z2B(ω)=i·Z·ω·tan(L·ωC-arctan(i·Z1B(ω)Z))

其中,Z1(ω)为上部位置1处的实测阻抗函数;Z2(ω)为下部位置2处的实测 阻抗函数;为上部位置1以下桩段顶阻抗函数;为下部位置2以下桩 段顶阻抗函数;为上部位置1以上桩段及上部结构在上部位置1处的阻抗 函数;为下部位置2以上桩段及上部结构在下部位置2处的阻抗函数;Z 为上部位置1和下部位置2之间桩段的截面力学阻抗;L为上部位置1和下部位 置2的距离;C为上部位置1和下部位置2之间桩段的一维纵向应力波传播速度; ω为圆频率;i为虚数单位;

2-3.计算检测位置以下桩段顶的速度导纳和其在模拟半正弦脉冲激振力激 振后得到的反射波曲线;

2-3-1.通过步骤2-2得到的和分别计算上部位置1和下部位置2 以下桩段顶的速度导纳;

2-3-2.获取检测位置以下桩段顶在模拟半正弦脉冲激振力激振后得到的反 射波曲线;

分别根据上部位置1和下部位置2以下桩段顶速度导纳计算上部位置1和 下部位置2以下桩段顶在模拟半正弦脉冲激振力激振后得到的反射波曲线:

反射波曲线=IDFT[速度导纳×FT(模拟半正弦脉冲激振力)]

其中,IDFT表示离散傅里叶逆变换,FT表示傅里叶变换。

步骤3所述的判断高承台桩完整性,具体如下:

通过速度导纳根据机械阻抗法判定高承台桩检测位置以下桩身的完整性; 或通过反射波曲线根据反射波法判定高承台桩检测位置以下桩身的完整性;

本发明工作原理如下:

如图1所示,在受测基桩上部沿桩身纵向选取间隔一定距离的两个位置(附 图中的上部位置1和下部位置2),分别在两个位置处进行激振(纵向、横向、 扭转激振均可),记录激振力信号及对应的不同激振位置的桩身截面的速度信 号,分别将得到的激振力信号和速度信号离散傅里叶变换后相除即可得到两位 置处的实测阻抗函数Z1(ω)和Z2(ω)。从理论上对受测基桩在上部位置1和下部位 置2处分别进行虚拟隔离,得到两种条件下虚拟隔离面以下的单桩及虚拟隔离 面以上的其余结构(包括上部结构和其他基桩在内)两部分,在这两个隔离界 面两侧,存在四个未知变量:上部位置1处虚拟隔离后的单桩桩顶阻抗函数和其余结构在上部位置1处的阻抗函数;下部位置2处虚拟隔离后的单桩 桩顶阻抗函数和其余结构在下部位置2处的阻抗函数。上部位置1处 的实测阻抗函数Z1(ω)是由和并联后得到;而下部位置2处的实测阻 抗函数Z2(ω)是由和并联后得到的。基于阻抗函数递推方法,还能够 得到两种情况下和及和之间的递推关系。至此,得到关于 包括Z1(ω)、Z2(ω)、等六个参量在内的方程组如下:

Z1(ω)=Z1A(ω)+Z1B(ω)Z2(ω)=Z2A(ω)+Z2B(ω)Z1A(ω)=f(Z2A(ω))Z2B(ω)=g(Z1B(ω))

由于Z1(ω)、Z2(ω)是能够通过现场测试得到的已知量,因此通过求解方程组 (1)得到和。此时得到的桩顶阻抗函数已完全消除了上部结构的影 响,并且这种隔离方法能适合于任何上部结构形式。得到隔离后的单桩桩顶阻 抗函数和之后,直接采用导纳曲线(取阻抗函数倒数即为导纳函数) 判断出完整桩或完全断裂桩的桩长或断裂深度,而对于存在一定缺陷的桩,由 于导纳曲线存在大峰夹小峰的复杂特征,从导纳曲线上较难直观判断出桩身情 况,此时可通过数值分析方法在隔离后的单桩桩顶虚拟输入一个半正弦脉冲, 得到隔离后单桩桩顶的反射波曲线,通过这种反射波曲线,直观准确地判断出 桩身缺陷的性质和位置。

所述激振设备7为纵向激振设备、扭转激振设备、横向激振设备,采用纵 向激振设备时,采集的加速度信号应为检测位置处桩身的纵向加速度信号,采 集的激振力信号应为纵向激振力信号;采用横向激振设备时,采集的加速度信 号应为检测位置处桩身的水平加速度信号,采集的激振力信号应为横向激振力 信号;采用扭转激振设备时,采集的加速度信号应为检测位置处桩身的水平切 向加速度信号,采集的激振力信号应为扭转激振力信号。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号