首页> 中国专利> 包括双取代的苯并噻二唑化合物的发光太阳能聚光器

包括双取代的苯并噻二唑化合物的发光太阳能聚光器

摘要

本发明提出了包括双取代的苯并噻二唑化合物的发光太阳能聚光器。其中,一种发光太阳能聚光器(LSC)包括至少一种具有通式(I)的双取代的苯并噻二唑化合物。所述发光太阳能聚光器(LSC)可以有利地用于构造发光太阳能聚光器(LSC)。

著录项

  • 公开/公告号CN102931265A

    专利类型发明专利

  • 公开/公告日2013-02-13

    原文格式PDF

  • 申请/专利权人 艾尼股份公司;

    申请/专利号CN201210279794.0

  • 申请日2012-08-08

  • 分类号

  • 代理机构北京清亦华知识产权代理事务所(普通合伙);

  • 代理人李志东

  • 地址 意大利罗马

  • 入库时间 2024-02-19 18:03:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-09-07

    授权

    授权

  • 2014-07-23

    实质审查的生效 IPC(主分类):H01L31/052 申请日:20120808

    实质审查的生效

  • 2013-02-13

    公开

    公开

说明书

技术领域

本发明涉及一种发光太阳能聚光器(luminescent solar concentrator)(LSC),所述发光太 阳能聚光器(LSC)包括至少一种双取代的苯并噻二唑化合物。

本发明还涉及至少一种双取代的苯并噻二唑化合物在构造发光太阳能聚光器(LSC)中 的用途。

本发明还涉及一种光伏器件,所述光伏器件选自,例如,在刚性支架(support)和柔性 支架上的光伏电池、光伏组件、太阳能电池、太阳能组件,所述光伏器件包括发光太阳能聚 光器(LSC),所述发光太阳能聚光器(LSC)包括至少一种双取代的苯并噻二唑化合物。

背景技术

已知的是,单结光伏电池不能有效地利用所有的太阳辐射。事实上,仅仅在某一光谱范 围内,该某一光谱范围包括一部分可见辐射和一部分红外辐射,它们的效率才是最大的。

能够捕获最佳光谱范围外的太阳辐射并将太阳辐射转化为有效辐射的光谱转换材料 (spectrum converter material),可以用于提高光伏电池的性能。而且,可以用这些材料制造 发光太阳能聚光器(LSC),这使光伏电池的电流的产生进一步增加。

所述发光太阳能聚光器(LSC)通常由对太阳辐射透明的材料的大板组成,在该大板中 荧光物质分散、或化学结合到所述材料,所述材料用作光谱转换材料(spectrum converter)。 由于全反射的光学现象的作用,由荧光分子发射的辐射被朝向该板的薄边缘“驱赶(driven)”, 在该板的薄边缘中,该辐射聚集在定位在其中的光伏电池或太阳能电池上。以这种方式,大 表面的低成本的材料(光致发光板)可以用于将光聚集在小表面的高成本的材料(光伏电池 或太阳能电池)上。

荧光化合物应该具有为了有利地用于构造发光太阳能聚光器(LSC)的很多特性,且这 些特性并不总是互相兼容的。

首先,由荧光(fluorescence)发射的辐射的频率必须与高于阈值的能量相应,低于该阈 值,代表光伏电池的核心的半导体不再能够工作。

其次,荧光化合物的吸收光谱应该尽可能宽,以便吸收大部分入射(inciding)太阳辐 射然后在所需的频率重新发射该太阳辐射。

也需要太阳辐射的吸收非常强,这样荧光化合物可以在最低可能的浓度下发挥它的作 用,避免使用巨大量。

而且,太阳辐射的吸收过程及其随后在较低频率的重新发射必须以最高可能的效率发 生,使所谓的非辐射损失降到最低,所谓的非辐射损失经常共同地以术语“热化”表示:该 过程的效率通过它的量子产量测量。

最后,吸收频率和发射频率必须尽可能不同,因为,否则由荧光化合物的分子发射的辐 射会被相邻的分子吸收或者至少部分地由相邻的分子扩散。这种现象,一般称为自吸收,不 可避免地导致效率的显著损失。在吸收光谱的具有较低频率的峰值与发射的辐射的峰值之间 的差一般以斯托克斯位移表示且以nm测量(它不是测量的两个频率之间的差,而是与测量 的两个频率相应的两个波长之间的差)。为了获得高频率的发光太阳能聚光器(LSC),高斯 托克斯位移是绝对必要的,考虑到已经提及的需要:发射的辐射的频率与高于阈值的能量相 应,低于该阈值,光伏电池不能运行。

已知的是,一些苯并噻二唑化合物,特别是4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB), 是可以用于构造发光太阳能聚光器(LSC)的荧光化合物。在意大利专利申请MI 2009 A 001796中以申请人的名义描述了这种类型的化合物。

4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)以集中在579nn附近的发射为特征,579nm 与远高于为了光伏电池的运行的最小阈值的能量相应,例如,对于最广泛使用的基于硅的电 池,所述阈值与约1100nm的波长相应。而且,光辐射的吸收是强的且遍及比较宽的波长范 围,表示地范围从550nm(绿色辐射(green radiation)波长)到紫外线。最后,4,7-二(噻 吩-2’-基)-2,1,3-苯并噻二唑(DTB)在二氯甲烷溶液中的斯托克斯位移,等于133nm,远高 于迄今为止为了用于发光太阳能聚光器而提出的大多数商业产品的斯托克斯位移。

由于这些原因,4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)的使用使得能够制造高质 量的发光太阳能聚光器(LSC)。

尽管4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)吸收太阳光谱的重要部分,然而4,7- 二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)在太阳光谱的较高的波长区域具有较小的吸收,该 太阳光谱的较高的波长区域与黄色辐射(yellow radiation)和红色辐射(red radiation)相应, 因此黄色辐射和红色辐射不能转化为被光伏电池更有效地利用的其他辐射。由于这个原因, 需要利用具有更红移的吸收光谱的荧光化合物。

发明内容

因此,申请人已经考虑寻找具有更红移的吸收光谱的化合物的问题。

现在,申请人已经发现具有特定的通式(即,具有以下表示的通式(I))的双取代的苯 并噻二唑化合物,可以有利地用于构造发光太阳能聚光器(LSC)。

所述发光太阳能聚光器(LSC)可以有利地用于构造光伏器件,诸如,例如,在刚性支 架和柔性支架上的光伏电池、光伏组件、太阳能电池、太阳能组件。事实上,相对于已知的 苯并噻二唑化合物,所述双取代的苯并噻二唑化合物具有更加红移的吸收光谱。

而且,所述双取代的苯并噻二唑化合物的斯托克斯位移(Stokes shift)比已知的苯并噻 二唑化合物的斯托克斯位移更高。

因此,本发明的一个目的涉及一种发光太阳能聚光器(LSC),所述发光太阳能聚光器 (LSC)包括至少一种具有通式(I)的双取代的苯并噻二唑化合物:

其中:

-R1、R2、R3、R4、R5、R6和R7,彼此相同或不同,代表氢原子;或者它们选自直链 或支链的C1-C20、优选地C1-C10、烷基,任选地取代的环烷基,任选地取代的芳基, 任选地取代的直链或支链的C1-C20、优选地C1-C10、烷氧基;

-或者R1和R2,可任选地结合到彼此,以与它们被结合到的碳原子一起形成环或多 环体系,所述环或多环体系包含3至14个碳原子,优选地4至6个碳原子,所述 环或多环体系是饱和的、不饱和的、或芳香族的,所述环或多环体系任选地包含一 个或多个杂原子,诸如,例如,氧、硫、氮、硅、磷、硒;

-或者R3和R4,可任选地结合到彼此,以与它们被结合到的碳原子一起形成环或多 环体系,所述环或多环体系包含3至14个碳原子,优选地4至6个碳原子,所述 环或多环体系是饱和的、不饱和的、或芳香族的,所述环或多环体系任选地包含一 个或多个杂原子,诸如,例如,氧、硫、氮、硅、磷、硒;

-或者R5和R6,可任选地结合到彼此,以与它们被结合到的碳原子一起形成环或多 环体系,所述环或多环体系包含3至14个碳原子,优选地4至6个碳原子,所述 环或多环体系是饱和的、不饱和的、或芳香族的,所述环或多环体系任选地包含一 个或多个杂原子,诸如,例如,氧、硫、氮、硅、磷、硒;

-或者R6和R7,可任选地结合到彼此,以与它们被结合到的碳原子一起形成环或多 环体系,所述环或多环体系包含3至14个碳原子,优选地4至6个碳原子,所述 环或多环体系是饱和的、不饱和的、或芳香族的,所述环或多环体系任选地包含一 个或多个杂原子,诸如,例如,氧、硫、氮、硅、磷、硒。

根据本发明的优选实施例,在所述通式(I)中,所述取代基R1、R2、R3、R4、R5、R6和R7代表氢原子。

因此,本发明的特别优选的方面涉及一种发光太阳能聚光器(LSC),所述发光太阳能 聚光器(LSC)包括具有式(Ia)的4,7-二(2’,2”-二-噻吩-5’-基)-2,1,3-苯并噻二唑(QTB):

根据本发明的进一步优选的实施例,在所述通式(I)中,所述取代基R1、R2、R3、R4、 R5和R6代表氢原子,所述取代基R7代表己基。

因此,本发明的特别优选的方面涉及一种发光太阳能聚光器(LSC),所述发光太阳能 聚光器(LSC)包括具有式(Ib)的4,7-二(5”-正己基-2’,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑 (QTB-ex):

附图说明

图1示出了根据本发明一个实施例的,关于被照明的表面的每个单位产生的功率的值, 以mW/cm2表示,与盖与包含太阳能电池的支架的边缘的距离有关的曲线。

图2示出了根据本发明一个实施例的,关于被照明的表面的每个单位产生的功率的值, 以mW/cm2表示,与盖与包含太阳能电池的支架的边缘的距离有关的曲线。

图3示出了根据本发明一个实施例的,关于被照明的表面的每个单位产生的功率的值, 以mW/cm2表示,与盖与包含太阳能电池的支架的边缘的距离有关的曲线。

具体实施方式

如以上所指出的,相对于4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)的吸收线,具有 通式(I)的苯并噻二唑化合物的吸收线更红移:这种吸收线是强的且在比较宽的波长范围 内是广的,例如,对于具有式(Ia)的4,7-二(2’,2”-二-噻吩-5’-基)-2,1,3-苯并噻二唑(QTB) 和具有式(Ib)的4,7-二(5”-正己基-2’,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB-ex),该比 较宽的波长范围从230nm到590nm。而且,所述具有通式(I)的化合物具有特别高的斯托 克斯位移。例如,具有式(Ia)的4,7-二(2’,2”-二-噻吩-5’-基)-2,1,3-苯并噻二唑(QTB)在 二氯甲烷溶液中的斯托克斯位移等于158nm,而具有式(Ib)的4,7-二(5”-正己基-2’,2”-二 噻吩-5’-基)-2,1,3-苯并噻二唑(QTB-ex)在二氯甲烷溶液中的斯托克斯位移等于166nm:因 此,比4,7-二(噻吩-2’-基)-2,1,3-苯并噻二唑(DTB)的已经高的斯托克斯位移更高。

为了本说明书和下面的权利要求书的目的,除非另外说明,数值范围的定义总是包括极 端值。

术语“C1-C20烷基”是指具有1至20个碳原子的直链或支链的烷基。C1-C20烷基的特定 例子是:甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、戊基、乙基己基、己基、 庚基、辛基、壬基、癸基、十二烷基。

术语“环烷基”是指具有3至10个碳原子的环烷基。所述环烷基可以任选地用一个或 多个基团取代,所述一个或多个基团彼此相同或不同,选自:卤素原子,诸如,例如,氟、 氯,优选地氟;羟基;C1-C20烷基;C1-C20烷氧基;氰基;氨基;硝基;芳基。环烷基的特 定例子是:环丙基、1,4-二噁英、2,2-二氟环丙基(difluorocyclopropyl)、环丁基、环戊基、 环己基、甲基环己基(methylcyclohexyl)、甲氧基环己基(methoxycyclohexyl)、氟代环己基 (fluorocyclohexyl)、苯基环己基(phenylcyclohexyl)。

术语“芳基”是指芳香族碳环基团。所述芳基可以任选地用一个或多个基团取代,所述 一个或多个基团彼此相同或不同,选自:卤素原子,诸如,例如,氟、氯,优选地氟;羟基; C1-C20烷基;C1-C20烷氧基;氰基;氨基;硝基;芳基。芳基的特定例子是:苯基、甲基苯 基、三甲基苯基、甲氧苯基、羟苯基、苯氧基苯基(phenyloxyphenyl)、氟苯基、五氟苯基、 氯苯基、硝基苯基、二甲氨基苯基(dimethylamminophenyl)、萘基、苯基萘基(phenylnaphthyl)、 菲、蒽。

术语“C1-C20烷氧基”是指具有1至20个碳原子的直链或支链的烷氧基。所述C1-C20烷氧基可以任选地用一个或多个基团取代,所述一个或多个基团彼此相同或不同,选自:卤 素原子,诸如,例如,氟、氯,优选地氟;羟基;C1-C20烷基;C1-C20烷氧基;氰基;氨基; 硝基;芳基。C1-C20烷氧基的特定例子是:甲氧基、乙氧基、氟代乙氧基(fluoroethoxyl)、 正丙氧基(n-propoxyl)、异丙氧基(iso-propoxyl)、正丁氧基(n-butoxyl)、正氟代丁氧基 (n-fluoro-butoxyl)、异丁氧基(iso-butoxyl)、叔丁氧基(t-butoxyl)、戊氧基(pentoxyl)、 己氧基(hexyloxyl)、庚氧基(heptyloxyl)、辛氧基(octyloxyl)、壬氧基(nonyloxyl)、癸氧 基(decyloxyl)、十二烷氧基(dodecyloxyl)。

术语“环或多环体系”涉及包含一个或多个环的体系,所述体系包含3至14个碳原子, 任选地包含杂原子,该杂原子选自氮、氧、硫、硅、硒、磷。环或多环体系的特定例子是: 噻吩并[3,2-b]噻吩、噻二唑、苯并噻吩、喹喔啉、吡啶。

可以根据现有技术中已知的工艺,例如,如在“Organic Letters”(2011),Vol.13,pages 90-93;“Chemistry-A European Journal”(1998),Vol.4,pages 1235-1243;“Chemistry-A  European Journal”(2007),Vol.13,pages 10046-10054,“Journal of Materials Chemistry”(2009), Vol.19,pages7730-7737中描述的,得到所述具有通式(I)的化合物。

例如,如在下面的方案中表示的,可以得到所述具有通式(I)的化合物:

其中,R1、R2、R3、R4、R5、R6和R7具有以上所定义的相同的含义,Pd(PPh3)2Cl2是二氯三 苯基膦钯(palladium dichlorotriphenylphosphine),THF是四氢呋喃,NBS是N-溴代丁二酰 亚胺,CHCl3是氯仿,rt表示室温(25℃)。

可以根据现有技术中已知的工艺,例如,通过将相应的苯并噻二唑化合物卤化,得到具 有通式(II)的苯并噻二唑化合物。例如,可以在“Tetrahedron”(2005),Vol.61,pages 7453-7460; “European Journal of Organic Chemistry”(2006),pages 4924-4933中找到关于这些工艺的进一 步细节。

可以根据现有技术中已知的工艺,诸如,例如,通过将相应的噻吩化合物锂化并随后甲 锡烷基化(stannylation),得到具有通式(III)的三-正丁基(噻吩-2-基)锡烷和具有通式(VI) 的三-正丁基(噻吩-2-基)锡烷。例如,可以在:“Journal of the Chemical Society,Perkin  Transactions 1:Organic and Bio-Organic Chemistry”(1988),pages 2415-2422;“Journal of  Polymer Science,Part A:Polymer Chemistry”(2010),Vol.48,pages 1714-1720中找到关于这些 工艺的进一步细节。特别地,在市场上可以容易地找到具有通式(III)的三-正丁基(噻吩-2- 基)锡烷,其中R3和R4是氢原子。

本发明的进一步目的涉及至少一种具有通式(I)的双取代的苯并噻二唑化合物在构造 发光太阳能聚光器(LSC)中的用途。

具有通式(I)的苯并噻二唑化合物可以下面的形式用于所述发光太阳能聚光器(LSC) 中:分散在聚合物中或分散在玻璃中,化学结合到聚合物或玻璃,在溶液中,以凝胶形式。

所述发光太阳能聚光器(LSC)可以包括,例如,透明基质,其中术语“透明基质”是 指以载体、配体形式使用的任何透明材料,或者这样的材料:至少一种具有通式(I)的双 取代的苯并噻二唑化合物分散在这样的材料中或包入这样的材料中。用于该基质的材料,本 身,对感兴趣的辐射是透明的,特别地,对具有在使用该材料的光伏器件(例如,光伏电池) 的有效光谱内的频率的辐射是透明的。因此,适合用于本发明的目的的材料可以选自对具有 范围从250nm到1100nm的波长的至少辐射透明的材料。

可以用于本发明的目的的透明基质可以选自,例如,聚合物材料或玻璃质材料。所述基 质以高透明性和相对于热和光的高耐久性(duration)为特征。可以有利地用于本发明的目 的的聚合物材料是,例如,聚甲基丙烯酸甲酯(PMMA)、环氧树脂、硅树脂、聚对苯二甲 酸亚烷基酯类、聚碳酸酯类、聚苯乙烯、聚丙烯。可以有利地用于本发明的目的的玻璃质材 料是,例如,二氧化硅。

如果该基质是聚合物类型的,那么通过,例如,熔融分散,并随后形成包括所述聚合物 和所述至少一种具有通式(I)的双取代的苯并噻二唑化合物的板,操作,例如,根据称为 铸造的技术,可以将所述至少一种具有通式(I)的双取代的苯并噻二唑化合物分散在所述 基质的聚合物中。可选地,可以将所述至少一种具有通式(I)的双取代的苯并噻二唑化合 物和所述基质的聚合物溶解在至少一种溶剂中,得到沉积在所述聚合物的板上的溶液,形成 包括所述至少一种具有通式(I)的双取代的苯并噻二唑化合物和所述聚合物的薄膜,操作, 例如,使用刮刀型薄膜涂布机(Doctor Blade-type film applicator):随后使所述溶剂蒸发。

如果所述基质是玻璃质类型的,那么可以将所述至少一种具有通式(I)的双取代的苯 并噻二唑化合物溶解在至少一种溶剂中,得到沉积在所述玻璃质类型的基质的板上的溶液, 形成包括所述至少一种具有通式(I)的双取代的苯并噻二唑化合物的薄膜,操作,例如, 使用刮刀型薄膜涂布机:随后使所述溶剂蒸发。

本发明的进一步目的还涉及一种光伏器件,所述光伏器件选自在刚性支架和柔性支架上 的光伏电池、光伏组件、太阳能电池、太阳能组件,所述光伏器件包括发光太阳能聚光器 (LSC),所述发光太阳能聚光器(LSC)包括至少一种具有通式(I)的双取代的苯并噻二 唑化合物。

例如,可以通过将上述发光太阳能聚光器与光伏电池装配,而得到所述光伏器件。

根据本发明的优选实施例,可以透明板的形式制造上述太阳能聚光器,上述透明板通过 以下步骤得到:将所述至少一种具有通式(I)的双取代的苯并噻二唑化合物和所述聚合物 类型的基质的聚合物溶解在至少一种溶剂中,得到沉积在所述聚合物的板上的溶液,形成包 括所述至少一种具有通式(I)的双取代的苯并噻二唑化合物和所述聚合物的薄膜,操作, 例如,使用刮刀型薄膜涂布机:随后使所述溶剂蒸发。在所述太阳能器件中,然后可以使所 述板与光伏电池连接。

为了更好地理解本发明及其实施例,以下提供一些说明性而非限制性的示例。

如在“Organic Letters”(2011),Vol.13,pages 90-93中描述的,得到具有式(Ia)的4,7-二 (2’,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB);而如在“Chemistry-A European Journal” (2007),Vol.13,pages 10046-10054中描述的,得到具有式(Ib)的4,7-二(5”-正己基-2’,2”- 二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB-ex)。

如在以申请人的名义的专利申请MI 20l0 A 001316中描述的,得到4,7-二(噻吩-2’- 基)-2,1,3-苯并噻二唑(DTB),该专利申请的内容通过参照并入本文。

示例1

将6g聚甲基丙烯酸甲酯Altuglas VSUVT 100(PMMA)和76.5mg4,7-二(2’,2”-二噻吩 -5’-基)-2,1,3-苯并噻二唑(QTB)溶于30ml 1,2-二氯苯中。随后,使用刮刀型薄膜涂布机将 得到的溶液均匀地沉积在聚甲基丙烯酸甲酯板Almglas VSUVT 100(PMMA)(尺寸90x90 x6mm)上,且使该溶剂在室温(25℃)下在小空气流中蒸发24小时。得到红色的透明板 (板1),该颜色由薄膜给予,其厚度范围证明是从50μm到350μm。

然后,将具有1.2cm2的表面的光伏电池IXYS-XOD17施加到聚合物板的边缘中的一个。

然后,用具有1sun(1000W/m2)的功率的光源照明该聚合物板的主要侧面[被包含4,7- 二(2,,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB)的薄膜覆盖的侧面],且测量由照明产生的 电功率。

通过用不透明涂层(盖)在从光伏电池被固定在的边缘渐增的距离覆盖聚合物支架的具 有可变面积的表面,而进行功率测量。在可变遮蔽条件下的这些测量允许定量由于该支架而 产生的可能的波导、边缘或多重扩散效应的贡献,因此允许被减去。

图1示出了关于被照明的表面的每个单位产生的功率的值,以mW/cm2表示,与该盖与 包含太阳能电池的支架的边缘的距离有关的曲线。

可以看出的是,没有边缘效应,产生的平均功率等于0.12W/cm2(图1)。

示例2

将6g聚甲基丙烯酸甲酯Almglas VSUVT 100(PMMA)和104.2mg4,7-二(5”-正己基 -2,,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB-ex)溶于30ml 1,2-二氯苯中。然后,使用刮刀 型薄膜涂布机将得到的溶液均匀地沉积在聚甲基丙烯酸甲酯Altuglas VSUVT 100(PMMA) 的板(尺寸90x90x6mm)上,且使该溶剂在室温(25℃)下在小空气流中蒸发24小时。 得到红色的透明板(板2),该颜色由薄膜给予,其厚度范围证明是从50μm到350μm。

然后,将具有1.2cm2的表面的光伏电池IXYS-XOD17施加到聚合物板的边缘中的一个。

然后,用具有1sun(1000W/m2)的功率的光源照明该聚合物板的主要侧面[被包含4,7- 二(5”-正己基-2,,2”-二噻吩-5’-基)-2,l,3-苯并噻二唑(QTB-ex)的薄膜覆盖的侧面],且测量 由照明的作用产生的电功率。

通过用不透明涂层(盖)在从光伏电池被固定在的边缘渐增的距离覆盖聚合物支架的具 有可变面积的表面,而进行功率测量。在可变遮蔽条件下的这些测量允许定量由于该支架而 产生的可能的波导、边缘或多重扩散效应的贡献,因此允许被减去。

图2示出了关于被照明的表面的每个单位产生的功率的值,以mW/cm2表示,与该盖与 包含太阳能电池的支架的边缘的距离有关的曲线。

可以看出的是,没有边缘效应,产生的平均功率等于0.10W/cm2(图2)。

示例3(对比的)

将6g聚甲基丙烯酸甲酯Altuglas VSUVT 100(PMMA)和49.5mg 4,7-二(噻吩-2’- 基)-2,1,3-苯并噻二唑(DTB)溶于30ml 1,2-二氯苯中。然后,使用刮刀型薄膜涂布机将得 到的溶液均匀地沉积在聚甲基丙烯酸甲酯Altuglas VSUVT 100(PMMA)的板(尺寸90x90 x6mm)上,且使该溶剂在室温(25℃)下在小空气流中蒸发24小时。得到黄色的透明板 (板3),该颜色由薄膜给予,其厚度范围证明是从50μm到350μm。

然后,将具有1.2cm2的表面的光伏电池施加到聚合物板的边缘中的一个。

然后,用具有1sun(1000W/m2)的功率的光源照明该聚合物板的主要侧面[被包含4,7- 二(噻吩-2’-基)-2,1,3-苯并噻二唑的薄膜覆盖的侧面],且测量由照明的作用产生的电功率。

通过用不透明涂层(盖)在从光伏电池被固定在的边缘渐增的距离覆盖聚合物支架的具 有可变面积的表面,而进行功率测量。在可变遮蔽条件下的这些测量允许定量由于该支架而 产生的可能的波导、边缘或多重扩散效应的贡献,因此允许被减去。

图3示出了关于被照明的表面的每个单位产生的功率的值,以mW/cm2表示,与该盖与 包含太阳能电池的支架的边缘的距离有关的曲线。

可以看出的是,没有边缘效应,产生的平均功率固定在大约0.079mW/cm2(图3),该 功率低于根据本发明的使用4,7-二(2’,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB)(示例1)、 和4,7-二(5”-正己基-2’,2”-二噻吩-5’-基)-2,1,3-苯并噻二唑(QTB-ex)(示例2)而产生的功 率。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号