首页> 中国专利> 基于非接触式霍尔效应测量石墨烯载流子迁移率的方法

基于非接触式霍尔效应测量石墨烯载流子迁移率的方法

摘要

本发明属于半导体技术领域,提供了基于非接触式霍尔效应测量石墨烯载流子迁移率的方法,采用入射电磁波激发的方式,在石墨烯中引入感应电流和霍尔电流,通过测量霍尔电流辐射出的电磁波,并与入射电磁波相比较,得出石墨烯的迁移率,再改变激发电磁波的投射位置,进行多点测量,并通过比较不同位置石墨烯迁移率,可得到石墨烯是否具有良好的一致性,该方法采用非接触式电磁波测量石墨烯迁移率,节省了测量石墨烯迁移率的时间,避免了传统方法制作金属探针对石墨烯性质的影响,可判定大量制备石墨烯是否具有良好的一致性,实用性强,具有较强的推广与应用价值。

著录项

  • 公开/公告号CN103033734A

    专利类型发明专利

  • 公开/公告日2013-04-10

    原文格式PDF

  • 申请/专利权人 西安电子科技大学;

    申请/专利号CN201210593927.1

  • 申请日2012-12-31

  • 分类号G01R31/26(20060101);

  • 代理机构北京科亿知识产权代理事务所(普通合伙);

  • 代理人汤东凤

  • 地址 710065 陕西省西安市雁塔区太白南路2号

  • 入库时间 2024-02-19 17:47:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-05-27

    授权

    授权

  • 2013-06-19

    实质审查的生效 IPC(主分类):G01R31/26 申请日:20121231

    实质审查的生效

  • 2013-04-10

    公开

    公开

说明书

技术领域

本发明属于半导体技术领域,尤其涉及基于非接触式霍尔效应测量石 墨烯载流子迁移率的方法。

背景技术

石墨烯材料是一种碳基二维晶体,是目前已知最轻最薄的材料,单层 仅原子厚度,它具有极其优异的物理化学性质,比如极高的载流子迁 移率(理论估计超过200000cm2V-1s-1,是Si的数百倍),超强的机械性 能(杨氏模量约1000GP),极高的比表面积和极好的气敏特性,极高 的透明性和柔韧性,而且它与衬底不存在失配问题,可以与Si基器件 工艺完全兼容,具有突出的产业优势。因此,石墨烯的出现为产业界 和科技界带来曙光,它是最被看好的替代Si成为下一代基础半导体材 料的新材料。

为了提高石墨烯制备的一致性,通常在制备结束后需要对石墨烯的迁 移率进行测试,常规的范德堡法原理简单,理论上适用于测量任意形 状样品(要求材料为近似二维材料,即厚度远小于长度宽度)测量误 差小。但是由于需要制作欧姆接触、金属焊点,使得石墨烯材料被破 环,难以进行其他测试。而且由于单层石墨烯厚度太薄,掺杂石 墨烯制备难以取得良好的一致性,石墨烯材料跟金属材料间的功函数 差异较大,不容易制成良好的欧姆接触,再加上石墨烯上电极制作昂 贵,使得范德堡法并不适合表征石墨烯。所以,为了高效的表征石墨 烯,判定大量制备石墨烯是否具有良好的一致性,提出了采用非接触 法测量迁移率。

发明内容

本发明提供了基于非接触式霍尔效应测量石墨烯载流子迁移率的方法 ,旨在解决现有技术提供的测试石墨烯迁移率的方法,使石墨烯材料 被破环,难以进行其他测试,同时测试成本较高,操作复杂的问题。

本发明的目的在于提供基于非接触式霍尔效应测量石墨烯载流子迁移 率的方法,该方法采用入射电磁波激发的方式,在石墨烯中引入感应 电流和霍尔电流,通过测量霍尔电流辐射出的电磁波,并与入射电磁 波相比较,得出石墨烯的迁移率,再改变激发电磁波的投射位置,进 行多点测量。

进一步,该方法的具体实现步骤如下:

步骤一,把铜圆片放置在载物台上,对准电磁波发射器,利用测试设 备自动读取铜片的反射能量,并获取的反射能量调整设备参数;

步骤二,把转移到衬底上的石墨烯放置在载物台上,选择内置的响应 测试衬底;

步骤三,对平衡桥电路施加反相信号,手动调节探测器,使探测 到的Hall值达到最小;

步骤四,在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓 度,测量值将用于迁移率的测量;

步骤五,保持磁感应强度在5000-10000G,测量石墨烯Hall激发电流辐 射的Hall能量,并由此计算得到石墨烯迁移率;

步骤六,移动衬底,测量其他位置石墨烯迁移率。

进一步,在步骤一中,由反射能量测量出的铜圆片电阻值不大于10oh ms。

进一步,在步骤二中,使用衬底须不小于2英寸。

进一步,在步骤六中,通过比较不同位置石墨烯迁移率,可得到石墨 烯是否具有良好的一致性。

本发明提供的基于非接触式霍尔效应测量石墨烯载流子迁移率的方法 ,采用入射电磁波激发的方式,在石墨烯中引入感应电流和霍尔电流 ,通过测量霍尔电流辐射出的电磁波,并与入射电磁波相比较,得出 石墨烯的迁移率,再改变激发电磁波的投射位置,进行多点测量,并 通过比较不同位置石墨烯迁移率,可得到石墨烯是否具有良好的一致 性,该方法采用非接触式电磁波测量石墨烯迁移率,节省了测量石墨 烯迁移率的时间,避免了传统方法制作金属探针对石墨烯性质的影响 ,可判定大量制备石墨烯是否具有良好的一致性,实用性强,具有较 强的推广与应用价值。

附图说明

图1是本发明实施例提供的基于非接触式霍尔效应测量石墨烯载流子迁 移率的方法的实现流程图;

图2是本发明实施例提供的基于非接触式霍尔效应测量石墨烯载流子迁 移率的方法的原理示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图 及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述 的具体实施例仅仅用以解释本发明,并不用于限定发明。

本发明的目的在于提供基于非接触式霍尔效应测量石墨烯载流子迁移 率的方法,该方法采用入射电磁波激发的方式,在石墨烯中引入感应 电流和霍尔电流,通过测量霍尔电流辐射出的电磁波,并与入射电磁 波相比较,得出石墨烯的迁移率,再改变激发电磁波的投射位置,进 行多点测量。

图1示出了本发明实施例提供的基于非接触式霍尔效应测量石墨烯载流 子迁移率的方法的实现流程。

如图1所示,在本发明实施例中,该方法的具体实现步骤如下:

步骤一,把铜圆片放置在载物台上,对准电磁波发射器,利用测试设 备自动读取铜片的反射能量,并获取的反射能量调整设备参数;

步骤二,把转移到衬底上的石墨烯放置在载物台上,选择内置的响应 测试衬底;

步骤三,对平衡桥电路施加反相信号,手动调节探测器,使探测 到的Hall值达到最小;

步骤四,在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓 度,测量值将用于迁移率的测量;

步骤五,保持磁感应强度在5000-10000G,测量石墨烯Hall激发电流辐 射的Hall能量,并由此计算得到石墨烯迁移率;

步骤六,移动衬底,测量其他位置石墨烯迁移率。

在本发明实施例中,在步骤一中,由反射能量测量出的铜圆片电阻值 不大于10ohms。

在本发明实施例中,在步骤二中,使用衬底须不小于2英寸。

在本发明实施例中,在步骤六中,通过比较不同位置石墨烯迁移率, 可得到石墨烯是否具有良好的一致性。

下面结合附图及具体实施例对本发明的应用原理作进一步描述。

本发明的目的在于克服接触式测量的不足,提供一种基于电磁波激发 的非接触式迁移率测量方法,可以免除探针,方便的测量石墨烯迁移 率。另外其多点测量的优势,可以用来表征石墨烯的均匀性。

实现本发明目的技术关键是:采用入射电磁波激发的方式,在石墨烯 中引入感应电流和霍尔电流,通过测量霍尔电流辐射出的电磁波,并 与入射电磁波相比较,得出石墨烯的迁移率。改变激发电磁波的投射 位置,进行多点测量。其实现步骤包括如下:

(1)把铜圆片放置在载物台上,对准电磁波发射器,测试设备自动读 取铜片的反射能量,以此调整设备参数,补偿测试过程中可能出现的 能量波动。由反射能量测量出的铜圆片电阻值不大于10ohms;

(2)把转移到衬底上的石墨烯放置在载物台上,选择软件内置的相应 测试衬底,使用衬底须不小于2英寸;

(3)系统对平衡桥电路施加反相信号,手动调节探测器,使探测到的 Hall值达到最小,尽可能的抵消噪声;

(4)在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓度, 测量值将用于迁移率的测量;

(5)保持磁感应强度在5000-10000G,测量石墨烯Hall激发电流辐射 的Hall能量,由此计算得到石墨烯迁移率;

(6)移动衬底,测量其他位置石墨烯迁移率,不同位置比较得到材料 是否均匀。

用上述方法测量石墨烯迁移率其特征在于:迁移率的测量不需要使用 金属探针接触,方便测量材料不同位置的迁移率。

本发明具有如下优点:

1.由于采用非接触式电磁波测量石墨烯迁移率,省去了探针制作,避 免了材料破坏。

2.由于采用非接触式电磁波测量石墨烯迁移率,可以方便的测量不同 位置的迁移率,表征石墨烯制备均匀性。

参照图1,本发明给出如下实施例: 

实施例1:

本发明的实现步骤如下:

步骤1,利用铜圆片调整设备参数。

把铜圆片放置在载物台上,对准电磁波发射器,测试设备自动读 取铜片的反射能量,由反射能量测量出的铜圆片电阻值不大于10ohms 。

步骤2,调节反射Hall值。

把石墨烯转移到4英寸Si衬底上,放置在载物台上,对准电磁波发射器 ,调整反射Hall值到最小。

步骤3,测量石墨烯面电阻和载流子浓度。

在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓度。

步骤4,测量石墨烯迁移率。

保持磁感应强度在5000G,测量石墨烯Hall激发电流辐射的Hall能量, 系统自动计算出石墨烯迁移率。

步骤5,移动衬底,测量其他位置迁移率。

实施例2:

本发明的实现步骤如下:

步骤A,利用铜圆片调整设备参数。

把铜圆片放置在载物台上,对准电磁波发射器,测试设备自动读取铜 片的反射能量,由反射能量测量出的铜圆片电阻值不大于10ohms。

步骤B,调节反射Hall值。

把石墨烯转移到3英寸SiO2衬底上,放置在载物台上,对准电磁波发射 器,调整反射Hall值到最小。

步骤C,测量石墨烯面电阻和载流子浓度。

在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓度。

步骤D,测量石墨烯迁移率。

保持磁感应强度在7000G,测量石墨烯Hall激发电流辐射的Hall能量, 系统自动计算出石墨烯迁移率。

步骤E,移动衬底,测量其他位置迁移率。

实施例3:

本发明的实现步骤如下:

步骤1,利用铜圆片调整设备参数。

把铜圆片放置在载物台上,对准电磁波发射器,测试设备自动读取铜 片的反射能量,由反射能量测量出的铜圆片电阻值不大于10ohms。

步骤2,调节反射Hall值。

把石墨烯转移到2英寸GaN衬底上,放置在载物台上,对准电磁波发射 器,调整反射Hall值到最小。

步骤3,测量石墨烯面电阻和载流子浓度。

在零磁场下,通过反射电磁波测量石墨烯面电阻和载流子浓度。

步骤4,测量石墨烯迁移率。

保持磁感应强度在10000G,测量石墨烯Hall激发电流辐射的Hall能量 ,系统自动计算出石墨烯迁移率。

步骤5,移动衬底,测量其他位置迁移率。

本发明公开了一种基于非接触式霍尔效应的石墨烯载流子迁移率测量 方法,主要解决非接触测量石墨烯迁移率的问题。其测量步骤是:( 1)把Cu圆片放置在载物台上,对准电磁波发射器,测试设备 自动读取铜片的反射能量,以此调整设备参数,补偿测试过程中可能 出现的能量波动。由反射能量测量出的Cu圆片电阻值不大于10ohms; (2)把转移到衬底上的石墨烯放置在载物台上,选择软件内置的相应 测试衬底,使用衬底须不小于2英寸;(3)系统对平衡桥电路施加反 相信号,手动调节探测器,使探测到的Hall值达到最小,尽可能的抵 消噪声;(4)在0磁场下,通过反射电磁波测量石墨烯面电阻和载流 子浓度,测量值将用于迁移率的测量;(5)保持磁感应强度在100-1 000G,测量石墨烯Hall激发电流辐射的Hall能量,由此计算得到石墨 烯迁移率;(6)移动衬底,测量其他位置石墨烯迁移率,不同位置比 较得到材料是否均匀。本发明节省了测量石墨烯迁移率的时间,避免 了制作金属探针对石墨烯性质的影响。

本发明实施例提供的基于非接触式霍尔效应测量石墨烯载流子迁移率 的方法,采用入射电磁波激发的方式,在石墨烯中引入感应电流和霍 尔电流,通过测量霍尔电流辐射出的电磁波,并与入射电磁波相比较 ,得出石墨烯的迁移率,再改变激发电磁波的投射位置,进行多点测 量,并通过比较不同位置石墨烯迁移率,可得到石墨烯是否具有良好 的一致性,该方法采用非接触式电磁波测量石墨烯迁移率,节省了测 量石墨烯迁移率的时间,避免了传统方法制作金属探针对石墨烯性质 的影响,可判定大量制备石墨烯是否具有良好的一致性,实用性强, 具有较强的推广与应用价值。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在 本发明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号