首页> 外文OA文献 >Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions
【2h】

Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions

机译:使用统计参数和径向基函数筛选膝关节纤颤信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Externally detected vibroarthrographic (VAG) signals bear diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces of the knee joint. Analysis of VAG signals could provide quantitative indices for noninvasive diagnosis of articular cartilage breakdown and staging of osteoarthritis. We propose the use of statistical parameters of VAG signals, including the form factor involving the variance of the signal and its derivatives, skewness, kurtosis, and entropy, to classify VAG signals as normal or abnormal. With a database of 89 VAG signals, screening efficiency of up to 0.82 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial basis functions.
机译:外部检测到的肺动脉造影(VAG)信号带有与膝关节的关节软骨表面的粗糙度,软化,破裂或润滑状态有关的诊断信息。对VAG信号的分析可以为非侵入性诊断关节软骨衰竭和骨关节炎的分期提供定量指标。我们建议使用VAG信号的统计参数,包括涉及信号及其导数,偏度,峰度和熵的方差的形状因子,将VAG信号分类为正常还是异常。使用基于径向基函数的神经网络分类器,在89个VAG信号的数据库中,根据接收器工作特性曲线下的面积,筛查效率高达0.82。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号