首页> 外文OA文献 >基于多元判别分析的汉语句群自动划分方法
【2h】

基于多元判别分析的汉语句群自动划分方法

机译:基于多元判别分析的汉语句群自动划分方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

针对目前句群划分工作缺乏计算语言学数据支持、忽略篇章衔接词的问题以及当前篇章分析较少研究句群语法单位的现象,提出一种汉语句群自动划分方法。该方法以汉语句群理论为指导,构建汉语句群划分标注评测语料,并且基于多元判别分析(MDA)方法设计了一组评价函数J,从而实现汉语句群的自动划分。实验结果表明,引入切分片段长度因素和篇章衔接词因素可以改善句群划分性能,并且利用Skip-Gram Model比传统的向量空间模型(VSM)有更好的效果,其正确分割率Pμ达到85.37%、错误分割率Window Diff降到24.08%。同时该方法在句群划分任务上有更大的优势,比传统MDA方法有更好的句群划分效果。
机译:针对目前句群划分工作缺乏计算语言学数据支持、忽略篇章衔接词的问题以及当前篇章分析较少研究句群语法单位的现象,提出一种汉语句群自动划分方法。该方法以汉语句群理论为指导,构建汉语句群划分标注评测语料,并且基于多元判别分析(MDA)方法设计了一组评价函数J,从而实现汉语句群的自动划分。实验结果表明,引入切分片段长度因素和篇章衔接词因素可以改善句群划分性能,并且利用Skip-Gram Model比传统的向量空间模型(VSM)有更好的效果,其正确分割率Pμ达到85.37%、错误分割率Window Diff降到24.08%。同时该方法在句群划分任务上有更大的优势,比传统MDA方法有更好的句群划分效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号