首页> 外文OA文献 >基于Boosting梯度下降理论的时间序列建模方法
【2h】

基于Boosting梯度下降理论的时间序列建模方法

机译:基于Boosting梯度下降理论的时间序列建模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

在预测问题中有很多实际问题具有时间序列特性,如何分析并建立合理的时间序列预测模型具有重要的理论价值与广泛的应用前景.随着对时间序列研究的逐步深入,时间序列预测模型变得越来越复杂,建模过程对设计技巧依赖性越来越强.如何设计一种不依赖于操作者的能力和经验,并且具有良好效果的建模方法呢?本文在集成学习理论的基础上,提出了基于bOOSTIng梯度下降理论的自回归模型集成(ArEnSEMblElEArnIng,ArEl)建模法,从理论上分析并论证了该建模法的有效性.为了避免ArEl精确拟合每一个训练样本点,在建模过程中引入了?-不敏感损失函,从而降低随机噪声对时间序列预测模型的影响.进而为了提高ArEl对非平稳时间序列的处理能力,提高算法的鲁棒性,防止发生过拟合,降低算法对模型阶次设置的敏感性,提出了基于ArEl的加权k近邻(WEIgHTEdknn)预报法.通过实例测试,并对结果进行了讨论,验证了所提出的建模法与预报方法的有效性.
机译:在预测问题中有很多实际问题具有时间序列特性,如何分析并建立合理的时间序列预测模型具有重要的理论价值与广泛的应用前景.随着对时间序列研究的逐步深入,时间序列预测模型变得越来越复杂,建模过程对设计技巧依赖性越来越强.如何设计一种不依赖于操作者的能力和经验,并且具有良好效果的建模方法呢?本文在集成学习理论的基础上,提出了基于bOOSTIng梯度下降理论的自回归模型集成(ArEnSEMblElEArnIng,ArEl)建模法,从理论上分析并论证了该建模法的有效性.为了避免ArEl精确拟合每一个训练样本点,在建模过程中引入了?-不敏感损失函,从而降低随机噪声对时间序列预测模型的影响.进而为了提高ArEl对非平稳时间序列的处理能力,提高算法的鲁棒性,防止发生过拟合,降低算法对模型阶次设置的敏感性,提出了基于ArEl的加权k近邻(WEIgHTEdknn)预报法.通过实例测试,并对结果进行了讨论,验证了所提出的建模法与预报方法的有效性.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号