首页> 外文OA文献 >Automatic Driver Fatigue Monitoring Using Hidden Markov Models and Bayesian Networks
【2h】

Automatic Driver Fatigue Monitoring Using Hidden Markov Models and Bayesian Networks

机译:使用隐马尔可夫模型和贝叶斯网络的自动驾驶员疲劳监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The automotive industry is growing bigger each year. The central concern for any automotive company is driver and passenger safety. Many automotive companies have developed driver assistance systems, to help the driver and to ensure driver safety. These systems include adaptive cruise control, lane departure warning, lane change assistance, collision avoidance, night vision, automatic parking, traffic sign recognition, and driver fatigue detection.In this thesis, we aim to build a driver fatigue detection system that advances the research in this area. Using vision in detecting driver fatigue is commonly the key part for driver fatigue detection systems. We have decided to investigate different direction. We examine the driver's voice, heart rate, and driving performance to assess fatigue level. The system consists of three main modules: the audio module, the heart rate and other signals module, and the Bayesian network module.The audio module analyzes an audio recording of a driver and tries to estimate the level of fatigue for the driver. A Voice Activity Detection (VAD) module is used to extract driver speech from the audio recording. Mel-Frequency Cepstrum Coefficients, (MFCC) features are extracted from the speech signal, and then Support Vector Machines (SVM) and Hidden Markov Models (HMM) classifiers are used to detect driver fatigue. Both classifiers are tuned for best performance, and the performance of both classifiers is reported and compared.The heart rate and other signals module uses heart rate, steering wheel position, and the positions of the accelerator, brake, and clutch pedals to detect the level of fatigue. These signals' sample rates are then adjusted to match, allowing simple features to be extracted from the signals, and SVM and HMM classifiers are used to detect fatigue level. The performance of both classifiers is reported and compared.Bayesian networks' abilities to capture dependencies and uncertainty make them a sound choice to perform the data fusion. Prior information (Day/Night driving and previous decision) is also incorporated into the network to improve the final decision. The accuracies of the audio and heart rate and other signals modules are used to calculate certain CPTs for the Bayesian network, while the rest of the CPTs are calculated subjectively. The inference queries are calculated using the variable elimination algorithm. For those time steps where the audio module decision is absent, a window is defined and the last decision within this window is used as a current decision. The performance of the system is assessed based on the average accuracy per second.A dataset was built to train and test the system. The experimental results show that the system is very promising. The performance of the system was assessed based on the average accuracy per second; the total accuracy of the system is 90.5%. The system design can be easily improved by easily integrating more modules into the Bayesian network.
机译:汽车行业每年都在增长。任何汽车公司的中心问题都是驾驶员和乘客的安全。许多汽车公司已经开发了驾驶员辅助系统,以帮助驾驶员并确保驾驶员安全。这些系统包括自适应巡航控制,车道偏离警告,变道辅助,避撞,夜视,自动泊车,交通标志识别和驾驶员疲劳检测。本文旨在建立一个能促进研究的驾驶员疲劳检测系统。在这方面。使用视觉检测驾驶员疲劳通常是驾驶员疲劳检测系统的关键部分。我们决定研究不同的方向。我们检查驾驶员的声音,心率和驾驶性能,以评估疲劳程度。该系统由三个主要模块组成:音频模块,心率和其他信号模块以及贝叶斯网络模块。音频模块分析驾驶员的音频记录,并尝试估算驾驶员的疲劳程度。语音活动检测(VAD)模块用于从录音中提取驾驶员语音。从语音信号中提取梅尔频率倒谱系数(MFCC)特征,然后使用支持向量机(SVM)和隐马尔可夫模型(HMM)分类器来检测驾驶员疲劳。调整两个分类器以获得最佳性能,并报告和比较两个分类器的性能。心率和其他信号模块使用心率,方向盘位置以及加速器,制动器和离合器踏板的位置来检测水平疲劳。然后调整这些信号的采样率以匹配,从而允许从信号中提取简单的特征,并使用SVM和HMM分类器检测疲劳程度。报告并比较了两个分类器的性能。贝叶斯网络捕获依赖项和不确定性的能力使其成为执行数据融合的明智选择。先前的信息(白天/夜晚驾驶和先前的决策)也被合并到网络中,以改善最终决策。音频,心率和其他信号模块的精度用于计算贝叶斯网络的某些CPT,而其余CPT是主观计算的。推理查询是使用变量消除算法计算的。对于缺少音频模块决策的那些时间步长,将定义一个窗口,并将该窗口内的最后一个决策用作当前决策。根据每秒的平均准确度评估系统的性能,并建立了一个数据集来训练和测试系统。实验结果表明该系统非常有前途。系统的性能是根据每秒的平均准确性进行评估的;系统的总精度为90.5%。通过轻松地将更多模块集成到贝叶斯网络中,可以轻松地改善系统设计。

著录项

  • 作者

    Rashwan Abdullah;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号