首页> 外文OA文献 >Subjective and Objective Quality-of-Experience of Adaptive Video Streaming
【2h】

Subjective and Objective Quality-of-Experience of Adaptive Video Streaming

机译:自适应视频流的主观和客观体验质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the rapid growth of streaming media applications, there has been a strong demand of Quality-of-Experience (QoE) measurement and QoE-driven video delivery technologies. While the new worldwide standard dynamic adaptive streaming over hypertext transfer protocol (DASH) provides an inter-operable solution to overcome the volatile network conditions, its complex characteristic brings new challenges to the objective video QoE measurement models. How streaming activities such as stalling and bitrate switching events affect QoE is still an open question, and is hardly taken into consideration in the traditionally QoE models. More importantly, with an increasing number of objective QoE models proposed, it is important to evaluate the performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of these methods.In this study, we build two subject-rated streaming video databases. The progressive streaming video database is dedicated to investigate the human responses to the combined effect of video compression, initial buffering, and stalling. The adaptive streaming video database is designed to evaluate the performance of adaptive bitrate streaming algorithms and objective QoE models. We also provide useful insights on the improvement of adaptive bitrate streaming algorithms.Furthermore, we propose a novel QoE prediction approach to account for the instantaneous quality degradation due to perceptual video presentation impairment, the playback stalling events, and the instantaneous interactions between them. Twelve QoE algorithms from four categories including signal fidelity-based, network QoS-based, application QoS-based, and hybrid QoE models are assessed in terms of correlation with human perception on the two streaming video databases. Experimental results show that the proposed model is in close agreement with subjective opinions and significantly outperforms traditional QoE models.
机译:随着流媒体应用的快速增长,对体验质量(QoE)测量和QoE驱动的视频交付技术的需求不断增长。虽然新的全球标准超文本传输​​协议上的动态自适应流媒体(DASH)提供了一种可互操作的解决方案来克服易变的网络条件,但其复杂的特性给客观视频QoE测量模型带来了新的挑战。诸如停顿和比特率切换事件之类的流活动如何影响QoE仍然是一个悬而未决的问题,在传统的QoE模型中几乎没有考虑。更重要的是,随着提出的客观QoE模型数量的增加,重要的是在比较的情况下评估这些算法的性能并分析这些方法的优缺点。在本研究中,我们建立了两个受主题评级的流视频数据库。渐进式流视频数据库专用于研究人类对视频压缩,初始缓冲和停顿的综合效果的响应。自适应流视频数据库旨在评估自适应比特率流算法和客观QoE模型的性能。我们还提供了有关改进自适应比特率流算法的有用见解。此外,我们提出了一种新颖的QoE预测方法,以解决由于感知视频呈现受损,播放停顿事件以及它们之间的瞬时相互作用导致的瞬时质量下降。根据两个流视频数据库上与人类感知的相关性,评估了来自四个类别的十二种QoE算法,包括基于信号保真度,基于网络QoS,基于应用QoS和混合QoE模型。实验结果表明,该模型与主观意见非常吻合,并且明显优于传统的QoE模型。

著录项

  • 作者

    Duanmu Zhengfang;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号