首页> 外文OA文献 >Distributed Task Allocation and Task Sequencing for Robots with Motion Constraints
【2h】

Distributed Task Allocation and Task Sequencing for Robots with Motion Constraints

机译:具有运动约束的机器人的分布式任务分配和任务排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis considers two routing and scheduling problems. The first problem is task allocation and sequencing for multiple robots with differential motion constraints. Each task is defined as visiting a point in a subset of the robot configuration space -- this definition captures a variety of tasks including inspection and servicing, as well as one-in-a-set tasks. Our approach is to transform the problem into a multi-vehicle generalized traveling salesman problem (GTSP). We analyze the GTSP insertion methods presented in literature and we provide bounds on the performance of the three insertion mechanisms. We then develop a combinatorial-auction-based distributed implementation of the allocation and sequencing algorithm. The number of the bids in a combinatorial auction, a crucial factor in the runtime, is shown to be linear in the size of the tasks. Finally, we present extensive benchmarking results to demonstrate the improvement over existing distributed task allocation methods.In the second part of this thesis, we address the problem of computing optimal paths through three consecutive points for the curvature-constrained forward moving Dubins vehicle. Given initial and final configurations of the Dubins vehicle and a midpoint with an unconstrained heading, the objective is to compute the midpoint heading that minimizes the total Dubins path length. We provide a novel geometrical analysis of the optimal path and establish new properties of the optimal Dubins' path through three points. We then show how our method can be used to quickly refine Dubins TSP tours produced using state-of-the-art techniques. We also provide extensive simulation results showing the improvement of the proposed approach in both runtime and solution quality over the conventional method of uniform discretization of the heading at the mid-point, followed by solving the minimum Dubins path for each discrete heading.
机译:本文考虑了两个路由和调度问题。第一个问题是具有不同运动约束的多个机器人的任务分配和排序。每个任务都被定义为访问机器人配置空间子集中的一个点-该定义捕获了各种任务,包括检查和维修以及一组任务。我们的方法是将问题转换为多车广义旅行推销员问题(GTSP)。我们分析了文献中介绍的GTSP插入方法,并提供了三种插入机制的性能界限。然后,我们开发分配和排序算法的基于组合拍卖的分布式实现。组合拍卖中的竞标数量是运行时的关键因素,它在任务规模上呈线性关系。最后,我们给出了广泛的基准测试结果,以证明对现有的分布式任务分配方法的改进。在本文的第二部分,我们解决了曲率约束的向前移动杜宾斯车辆通过三个连续点计算最优路径的问题。给定Dubins车辆的初始和最终配置以及航向不受限制的中点,目标是计算使Dubins总路径长度最小的中点航向。我们提供了最佳路径的新颖几何分析,并通过三个点建立了最佳杜宾斯路径的新属性。然后,我们将展示如何使用我们的方法快速完善使用最新技术生产的杜宾TSP旅行。我们还提供了广泛的仿真结果,表明与常规的中点航向均匀离散化的传统方法相比,所提出方法在运行时和解决方案质量方面的改进,然后为每个离散航向求解了最小杜宾斯路径。

著录项

  • 作者

    Sadeghi Yengejeh Armin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号