首页> 外文OA文献 >Dynamic Modeling of Drug Transport in Solid Tumors and Optimal Chemotherapy Regimen
【2h】

Dynamic Modeling of Drug Transport in Solid Tumors and Optimal Chemotherapy Regimen

机译:实体肿瘤中药物传输的动态建模和最佳化疗方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most common therapies for treatment of cancer patients is chemotherapy. Therapeutic agents (drugs) can kill cancer cells by damaging their DNA and interrupting their extensive proliferation. Successful chemotherapy depends on the injected drug dosages and their timings. A high dosage of the therapeutic agents is toxic to normal cells, whereas a low dosage leads to an unsuccessful treatment. Distribution of drugs within solid tumors and their efficacy depend on the drug biophysical properties as well as physiological properties of solid tumor under treatment; therefore, the chemotherapy regimen should be determined and personalized for a specific patient and drug. Finding the optimal scheduling of chemotherapy for a specific drug and tumor condition using clinical or preclinical studies is almost impossible, as many parameters are involved and examining all of them is costly and lengthy. Mathematical models, instead, can be used to overcome these limitations. The objective of this study is to introduce a method for finding the optimal chemotherapy regimen that can be applied to a wide range of tumor microenvironments. We first use transport phenomena equations such as Darcy's law, the continuity equation, and Startling's equation to model the fluid flow within a tumor microenvironment. Two main mechanisms of drug transport is convection and diffusion; thus, an advection-diffusion equation is utilized to calculate spatio-temporal distribution of chemotherapeutic drugs. Then, a novel algorithm is developed to calculate the distribution of fluid and drug within an ideal image of a solid tumor, in which the tumor boundary and vasculature are perfectly recognized. Using this computational framework, we study the effects of important features of tumor microenvironment such as microvascular density and vessel locations on the drug macromolecule distribution. Finally, built upon these computations, we develop an algorithm for finding the optimal regimen for injection of drug nanoparticles to a specific tumor microenvironment. Firstly, different drug delivery steps including traveling within blood vessels, penetration from vessel walls to tumor tissue, distribution within tumor tissue, binding to cancer cell receptors, and internalization within cancer cells are mathematically modeled. Then, an objective function is defined based on the efficiency of drug macromolecules in killing cancer cells. We use an optimization algorithm to find an optimal dosage regimen that maximizes the eradication of cancer cells over treatment period while satisfying specific constraints. Constraints are set to make sure the toxicity level of drugs is tolerable by the patient. This computational framework is applied to conventional chemotherapy and chemotherapy using drugs encapsulated in liposomes. Moreover, the efficacy of two delivery approaches, bolus injection and continuous infusion, when optimal dosages are applied is investigated.
机译:用于治疗癌症患者的最常见疗法之一是化学疗法。治疗剂(药物)可以通过破坏癌细胞的DNA并中断其广泛的增殖来杀死癌细胞。成功的化学疗法取决于所注射的药物剂量及其时机。高剂量的治疗剂对正常细胞有毒性,而低剂量则导致治疗失败。实体瘤内药物的分布及其功效取决于所治疗实体瘤的药物生物物理特性和生理特性;因此,应针对特定患者和药物确定化疗方案并对其进行个性化设置。使用临床或临床前研究来寻找针对特定药物和肿瘤状况的最佳化疗方案几乎是不可能的,因为涉及许多参数,并且对所有参数进行检查既昂贵又冗长。相反,可以使用数学模型来克服这些限制。这项研究的目的是介绍一种寻找可用于多种肿瘤微环境的最佳化疗方案的方法。我们首先使用传输现象方程式,例如达西定律,连续性方程式和斯特灵方程式,对肿瘤微环境中的流体流动进行建模。对流和扩散是药物运输的两个主要机制。因此,利用对流扩散方程来计算化学疗法药物的时空分布。然后,开发了一种新颖的算法来计算实体肿瘤理想图像内的液体和药物分布,在该图像中,肿瘤边界和脉管系统得到了完美识别。使用这种计算框架,我们研究了肿瘤微环境的重要特征,如微血管密度和血管位置对药物大分子分布的影响。最后,基于这些计算,我们开发了一种算法,用于寻找将药物纳米粒子注射到特定肿瘤微环境的最佳方案。首先,数学上模拟了不同的药物输送步骤,包括在血管内移动,从血管壁到肿瘤组织的渗透,肿瘤组织内的分布,与癌细胞受体的结合以及癌细胞内的内在化。然后,基于药物大分子杀死癌细胞的效率来定义目标函数。我们使用优化算法来找到最佳剂量方案,该方案可在满足特定限制的同时最大程度地消除治疗期间的癌细胞。设置约束条件以确保患者可以耐受药物的毒性水平。该计算框架适用于常规化疗和使用封装在脂质体中的药物进行的化疗。此外,还研究了采用最佳剂量时推注和连续输注两种递送方法的功效。

著录项

  • 作者

    Mohammadi Mohammad;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号