首页> 外文OA文献 >Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
【2h】

Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

机译:循环变形导致缺陷愈合和小体积金属晶体的强化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.
机译:当金属的微观和宏观样本承受循环载荷时,缺陷的产生,相互作用和累积会导致损坏,破裂和破坏。在这里,我们证明,当亚微米尺寸的铝单晶在室温下经受低振幅的循环变形时,原有位错线和环的密度可以显着降低,而总体样品的几何形状几乎没有变化,并且基本上没有永久塑性应变。金属晶体的这种“周期性修复”通过显着降低位错密度而导致显着增强,这与由位错密度增加以及微晶和大晶金属和合金中的缺陷之间的相互作用所引起的常规循环应变硬化机制形成鲜明对比。我们对拉伸试验的实时,原位透射电子显微镜观察表明,钉扎位错线在循环应变期间会发生震动,位错松开的程度取决于应变周期的幅度,顺序和数量。由于这种反复的应变,那些未固定的可移动位错移动到足够接近薄样品的自由表面的位置,然后被有利于它们从晶体中逸出的像力进一步吸引到表面。这些结果指出了在亚微米级金属晶体中进行受控机械退火和缺陷工程的通用途径,从而避免了可能导致样品形状和/或尺寸变化的热退火或明显的塑性变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号