首页> 外文OA文献 >Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow
【2h】

Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

机译:模拟磁场纳米粒子在横向旋转场和施加流体流动的低场mRI中的行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, ττ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s[superscript −1]. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B[subscript 0]. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B[subscript 0]. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002–0.01 solid volume fraction) and nanoparticle radii (1–10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B[subscript 0] field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B[subscript 0] are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1–3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.
机译:在交变正弦或旋转磁场的存在下,磁性纳米粒子将起到将其磁矩与施加的磁场重新对齐的作用。重新排列的特征在于纳米粒子的时间常数ττ。随着磁场频率的增加,对于给定的频率Ω,以弧度s [上标-1]而言,纳米粒子的磁矩以恒定角度滞后于施加的磁场。与这种未对准相关的是功耗的增加,该功耗提高了整体磁性流体的温度,这种功耗已被用作磁性纳米粒子高温疗法的一种方法,特别适用于温度在4至7°之间升高的低灌注组织(例如,乳房)中的癌症体内温度高于环境温度会导致肿瘤热疗。这项工作研究了以大DC场B [下标0]为特征的MRI环境中磁性流体温度的升高。理论分析和模拟用于预测横向于B [下标0]的交变正弦磁场和旋转磁场的影响。给出了在适当范围的磁性流体浓度(0.002–0.01固体体积分数)和纳米粒子半径(1–10 nm)范围内的小肿瘤(半径约1 cm)中预期温度升高的结果。结果表明,即使在磁流体饱和度不显着的低场MRI系统中,也可能发生明显的加热,该工作的目标是通过分析和模拟的方式研究交互式流体磁化的概念,即MRI环境中超顺磁性氧化铁纳米颗粒悬浮液的动力学行为。除了与MRI关联的常规磁场外,横向于MRI的主B [下标0]场施加旋转磁场。先前已经提出了额外的或修改的磁场用于MRI内的热疗和靶向药物输送。研究了在存在B [下标0]的情况下横向旋转磁场的分析预测和数值模拟,以证明Ω,旋转磁场频率和磁场振幅对流体悬浮磁化强度的影响。由于旋转的横向磁场而产生的横向磁化强度强烈依赖于流体悬浮液的特征时间常数τ。分析表明,随着旋转磁场频率的增加,使得Ωτ趋于一致,横向流体磁化矢量与施加的旋转磁场明显不对齐,并且磁化强度是磁场频率的强函数。在此频率范围内,流体的横向磁化强度由操作员确定的外加磁场控制。这种现象是由于悬浮液中磁性纳米粒子的物理旋转而引起的,这种现象已通过分析证明,当纳米粒子以较高的热疗浓度(固含量分数为1-3%)存在时,而不是在临床成像应用中更常见,并且在较低的MRI场强度(例如开放式MRI系统)中,磁性纳米颗粒没有磁性饱和。研究了在平面通道几何形状中施加的泊瓦流动和改变纳米粒子浓度的影响。这项工作代表了分析磁性纳米粒子在MRI环境中的动态行为(包括磁性纳米粒子自旋速度的影响)的首次已知尝试。结果表明,横向磁化强度是旋转横向磁场频率的强函数。由于在具有高纳米粒子浓度的平面Poiseuille流中的不均匀流体磁化作用,可预测交互式流体的磁化作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号