首页> 外文OA文献 >A software automation framework for image-typeface matching in graphic design
【2h】

A software automation framework for image-typeface matching in graphic design

机译:用于图形设计中图像字体匹配的软件自动化框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This research proposes the framework for an automation tool that facilitates the graphic design process of image-font pairing or matching. Considering traditional graphic design principles, a multi-step software algorithm was developed to emulate the process of determining proportions and visual axes of both images and fonts. The algorithm then matches these visual markers using a decision hierarchy to produce a ranking of appropriate fonts from an existing font dataset. To test the algorithm, 8 benchmark images were selected with varying proportions and visual axes. To build the font data set, each image was manually analyzed through a traditional graphic design process and then two fonts per image with similar, matching characteristics were manually selected. The 8 benchmark images and 16 fonts were then used as inputs into the proposed matching software program. The results of the manually prescribed font-image pairings and calculated matches were then compared. Two images had the intended font in the top 4, two images had one of the intended fonts in the top 4, and 4 images had neither of the intended fonts in the top 4. An additional step in image-font pairing includes detail matching by determining curvature similarities. This detail analysis will affect the pairing outcomes and should be further investigated. This research began to analyze these details, and makes recommendations for continuing this work. Additional future directions for this work include incorporating a user-interface to the matching algorithm, introducing expert testing, and down-selecting the first font pool based on deviation.
机译:这项研究提出了一种自动化工具的框架,该工具可促进图像字体配对或匹配的图形设计过程。考虑到传统的图形设计原理,开发了一种多步骤软件算法来模拟确定图像和字体的比例和视轴的过程。然后,该算法使用决策层次结构匹配这些视觉标记,以根据现有字体数据集生成适当字体的等级。为了测试该算法,选择了8个具有不同比例和视轴的基准图像。为了建立字体数据集,通过传统的图形设计过程手动分析每个图像,然后手动选择每个图像具有相似,匹配特征的两个字体。然后将8个基准图像和16个字体用作建议的匹配软件程序的输入。然后比较手动指定的字体-图像配对和计算出的匹配结果。两张图像的预期字体位于前4个,两个图像的预期字体之一位于前4个,而4幅图像的预期字体不在前四个中。图像-字体配对的另一步骤包括通过确定曲率相似度。此详细分析将影响配对结果,应进一步调查。这项研究开始分析这些细节,并为继续进行这项工作提出了建议。这项工作的其他未来方向包括将用户界面整合到匹配算法中,引入专家测试,并根据偏差向下选择第一个字体库。

著录项

  • 作者

    Morris Taylor Javier;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号