首页> 外文OA文献 >Estimating memory locality for virtual machines on NUMA systems
【2h】

Estimating memory locality for virtual machines on NUMA systems

机译:估计NUma系统上虚拟机的内存位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The multicore revolution sparked another, similar movement towards scalable memory architectures. With most machines nowadays exhibiting non-uniform memory access (NUMA) properties, software and operating systems have seen the necessity to optimize their memory management to take full advantage of such architectures. Type 1 (native) hypervisors, in particular, are required to extract maximum performance from the underlying hardware, as they often run dozens of virtual machines (VMs) on a single system and provide clients with performance guarantees that must be met. While VM memory demand is often satisfied by CPU caches, memory-intensive workloads may induce a higher rate of last-level cache misses, requiring more accesses to RAM. On today's typical NUMA systems, accessing local RAM is approximately 50% faster than remote RAM. We discovered that current-generation processors from major manufacturers do not provide inexpensive ways to characterize the memory locality achieved by VMs and their constituents. Instead, we present in this thesis a series of techniques based on statistical sampling of memory that produce powerful estimates for NUMA locality and related metrics. Our estimates offer tremendous insight on inefficient placement of VMs and memory, and can be a solid basis for algorithms aiming at dynamic reorganization for improvements in locality, as well as NUMA-aware CPU scheduling algorithms.
机译:多核革命引发了另一种类似的向可扩展内存架构发展的趋势。如今,由于大多数计算机都具有非均匀的内存访问(NUMA)属性,因此软件和操作系统已看到有必要优化其内存管理以充分利用此类体系结构。特别是类型1(本机)虚拟机管理程序需要从底层硬件中提取最大性能,因为它们通常在单个系统上运行数十个虚拟机(VM),并为客户提供必须满足的性能保证。尽管CPU缓存通常可以满足VM内存需求,但是内存密集型工作负载可能会导致更高级别的上一级缓存未命中率,从而需要对RAM的更多访问。在当今的典型NUMA系统上,访问本地RAM的速度比远程RAM快50%。我们发现,主要制造商提供的当前处理器并不能提供廉价的方法来表征虚拟机及其组成部分所实现的内存局部性。取而代之的是,我们在本文中提出了一系列基于内存统计采样的技术,这些技术可为NUMA局部性和相关度量提供强大的估计。我们的估计提供了关于VM和内存效率低下的巨大见解,并且可以为旨在动态重组以提高局部性的算法以及NUMA感知的CPU调度算法提供坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号