首页> 外文OA文献 >Bridging adaptive estimation and control with modern machine learning : a quorum sensing inspired algorithm for dynamic clustering
【2h】

Bridging adaptive estimation and control with modern machine learning : a quorum sensing inspired algorithm for dynamic clustering

机译:利用现代机器学习桥接自适应估计和控制:用于动态聚类的群体感应启发算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quorum sensing is a decentralized biological process, by which a community of bacterial cells with no global awareness can coordinate their functional behaviors based only on local decision and cell-medium interaction. This thesis draws inspiration from quorum sensing to study the data clustering problem, in both the time-invariant and the time-varying cases. Borrowing ideas from both adaptive estimation and control, and modern machine learning, we propose an algorithm to estimate an "influence radius" for each cell that represents a single data, which is similar to a kernel tuning process in classical machine learning. Then we utilize the knowledge of local connectivity and neighborhood to cluster data into multiple colonies simultaneously. The entire process consists of two steps: first, the algorithm spots sparsely distributed "core cells" and determines for each cell its influence radius; then, associated "influence molecules" are secreted from the core cells and diffuse into the whole environment. The density distribution in the environment eventually determines the colony associated with each cell. We integrate the two steps into a dynamic process, which gives the algorithm flexibility for problems with time-varying data, such as dynamic grouping of swarms of robots. Finally, we demonstrate the algorithm on several applications, including benchmarks dataset testing, alleles information matching, and dynamic system grouping and identication. We hope our algorithm can shed light on the idea that biological inspiration can help design computational algorithms, as it provides a natural bond bridging adaptive estimation and control with modern machine learning.
机译:群体感应是一个分散的生物过程,没有全局意识的细菌细胞群落可以仅基于局部决策和细胞-介质相互作用来协调其功能行为。本文从群体感应中汲取了启发,研究了时不变和时变情况下的数据聚类问题。借鉴自适应估计和控制以及现代机器学习的思想,我们提出一种算法来估计代表单个数据的每个单元的“影响半径”,这与经典机器学习中的内核调整过程相似。然后,我们利用本地连通性和邻域知识将数据同时聚类为多个菌落。整个过程包括两个步骤:首先,该算法识别稀疏分布的“核心单元”,并为每个单元确定其影响半径;然后,相关的“影响分子”从核心细胞中分泌出来并扩散到整个环境中。环境中的密度分布最终决定了与每个细胞相关的菌落。我们将这两个步骤集成到一个动态过程中,这为算法提供了针对时变数据问题的灵活性,例如,机器人群体的动态分组。最后,我们在几种应用程序上演示了该算法,包括基准数据集测试,等位基因信息匹配以及动态系统分组和识别。我们希望我们的算法能够阐明生物灵感可以帮助设计计算算法的想法,因为它提供了自然的桥梁,可以与现代机器学习相结合,进行自适应估计和控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号