首页> 外文OA文献 >Likelihood and Bayesian signal processing methods for the analysis of auditory neural and behavioral data
【2h】

Likelihood and Bayesian signal processing methods for the analysis of auditory neural and behavioral data

机译:用于分析听觉神经和行为数据的似然和贝叶斯信号处理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Developing a consensus on how to model neural and behavioral responses and to quantify important response properties is a challenging signal processing problem because models do not always adequately capture the data and different methods often yield different estimates of the same response property. The threshold, the first stimulus level for which a difference between baseline activity and stimulus-driven activity exists, is an example of such a response property for both neural and behavioral responses.In the first and second sections of this work, we show how the state-space model framework can be used to represent neural and behavioral responses to auditory stimuli with a high degree of model goodness-of-fit. In the first section, we use likelihood methods to develop a state-space generalized linear model and estimate maximum likelihood parameters for neural data. In the second section, we develop the alternative Bayesian state-space model for behavioral data. Based on the estimated joint density, we then illustrate how important response properties, such as the neural and behavioral threshold, can be estimated, leading to lower threshold estimates than current methods by at least 2 dB. Our methods provide greater sensitivity, obviation of the hypothesis testing framework, and a more accurate description of the data.Formulating appropriate models to describe neural data in response to natural sound stimulation is another problem that currently represents a challenge. In the third section of the thesis, we develop a generalized linear model for responses to natural sound stimuli and estimate maximum likelihood parameters. Our methodology has the advantage of describing neural responses as point processes, capturing aspects of the stimulus response such as past spiking history and estimating the contributions of the various response covariates, resulting in a high degree of model goodness-of-fit.
机译:在如何对神经和行为反应进行建模以及量化重要的反应特性方面达成共识是一个具有挑战性的信号处理问题,因为模型并不总是能够充分捕获数据,并且不同的方法通常会得出相同反应特性的不同估计。阈值是基线活动与刺激驱动活动之间存在差异的第一个刺激水平,是神经和行为反应的这种响应特性的一个示例。在本研究的第一和第二部分,我们将说明状态空间模型框架可用于以高度模型拟合优度来表示对听觉刺激的神经和行为响应。在第一部分中,我们使用似然方法开发状态空间广义线性模型并估计神经数据的最大似然参数。在第二部分中,我们为行为数据开发了替代贝叶斯状态空间模型。然后,基于估计的关节密度,我们说明如何估计重要的响应特性,例如神经和行为阈值,从而使阈值估计值比当前方法低至少2 dB。我们的方法提供了更高的灵敏度,消除了假设检验框架以及对数据进行了更准确的描述。形成适当的模型来描述响应自然声音刺激的神经数据是当前面临的另一个难题。在论文的第三部分,我们建立了一个对自然声刺激的响应的广义线性模型,并估计了最大似然参数。我们的方法的优势在于将神经反应描述为点过程,捕获刺激反应的各个方面(例如过去的加标历史)并估计各种反应协变量的贡献,从而导致模型拟合优度很高。

著录项

  • 作者

    Dreyer Anna Alexandra;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号