首页> 外文OA文献 >Migration from electronics to photonics in multicore processor
【2h】

Migration from electronics to photonics in multicore processor

机译:在多核处理器中从电子设备迁移到光子学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Twenty - first opportunities for Gigascale Integration will be governed in part by a hierarchy of physical limits on interconnect. Microprocessor performance is now limited by the poor delay and bandwidth performance of the on - chip global wiring layer. This thesis is envisioned as a critical showstopper of electronic industry in the near future. The physical reason behind the interconnect bottleneck is the resistive nature of metals. The introduction of copper in place of aluminum has temporarily improved the interconnect performance, but a more disruptive solution will be required in order to keep the current pace of progress, optical interconnect is an intriguing alternative to metallic wires. Many - core microprocessors will push performance per chip from the 10 gigaflop to the 10 teraflop range in the coming decade. Pin limitations, the energy cost of electrical signaling, and the non - scalability of chip - length global wires are significant bandwidth impediments. Silicon nanophotonic based many core architecture are introduced in order to meet the bandwidth requirements at acceptable power levels.
机译:二十-千兆集成的首次机会将部分由互连的物理限制层次结构决定。现在,片上全局布线层的延迟和带宽性能差,限制了微处理器的性能。可以预见,这篇论文将在不久的将来成为电子行业的重要代表。互连瓶颈背后的物理原因是金属的电阻特性。铜代替铝的引入暂时改善了互连性能,但为了保持当前的发展步伐,将需要更具破坏性的解决方案,光学互连是金属线的一种引人入胜的替代方案。在接下来的十年中,许多核心微处理器将把每个芯片的性能从10 gigaflop提升到10 teraflop。引脚限制,电信号传输的能量成本以及芯片长度的全局导线的不可扩展性是显着的带宽障碍。引入了基于硅纳米光子的许多核心架构,以便在可接受的功率水平上满足带宽要求。

著录项

  • 作者

    Xu Zhoujia;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号