首页> 外文OA文献 >Dynamic human-computer collaboration in real-time unmanned vehicle scheduling
【2h】

Dynamic human-computer collaboration in real-time unmanned vehicle scheduling

机译:实时无人驾驶车辆调度中的动态人机协作

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so that a single operator can control multiple heterogeneous Unmanned Vehicles (UVs). This autonomy will reduce the need for the operator to manually control each vehicle, enabling the operator to focus on higher-level goal setting and decision-making. Computer optimization algorithms that can be used in UV path-planning and task allocation usually have an a priori coded objective function that only takes into account pre-determined variables with set weightings. Due to the complex, time-critical, and dynamic nature of command and control missions, brittleness due to a static objective function could cause higher workload as the operator manages the automation. Increased workload during critical decision-making could lead to lower system performance which, in turn, could result in a mission or life-critical failure. This research proposes a method of collaborative multiple UV control that enables operators to dynamically modify the weightings within the objective function of an automated planner during a mission. After a review of function allocation literature, an appropriate taxonomy was used to evaluate the likely impact of human interaction with a dynamic objective function. This analysis revealed a potential reduction in the number of cognitive steps required to evaluate and select a plan, by aligning the objectives of the operator with the automated planner. A multiple UV simulation testbed was modified to provide two types of dynamic objective functions. The operator could either choose one quantity or choose any combination of equally weighted quantities for the automated planner to use in evaluating mission plans. To compare the performance and workload of operators using these dynamic objective functions against operators using a static objective function, an experiment was conducted where 30 participants performed UV missions in a synthetic environment. Two scenarios were designed, one in which the Rules of Engagement (ROEs) remained the same throughout the scenario and one in which the ROEs changed. The experimental results showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing the operator to choose multiple objectives resulted in fewer modifications to the objective function, enhanced situational awareness (SA), and increased spare mental capacity. Limiting the operator to choosing a single objective for the automated planner led to superior performance for individual mission goals such as finding new targets, while also causing some violations of ROEs, such as destroying a target without permission. Although there were no significant differences in system performance or workload between the dynamic and static objective 4 functions, operators had superior performance and higher SA during the mission with changing ROEs. While these results suggest that a dynamic objective function could be beneficial, further research is required to explore the impact of dynamic objective functions and changing mission goals on human performance and workload in multiple UV control.
机译:自主性的进步使得反转驾驶员与车辆的比例成为可能,这样一个驾驶员就可以控制多辆异构无人驾驶汽车。这种自主性将减少操作员手动控制每辆车的需要,使操作员可以专注于更高级别的目标设定和决策。可用于UV路径规划和任务分配的计算机优化算法通常具有先验编码的目标函数,该函数仅考虑具有设置权重的预定变量。由于指挥和控制任务的复杂性,时间紧迫性和动态性,由于操作员管理自动化,静态目标功能导致的脆性可能导致更高的工作量。在关键决策过程中增加的工作量可能会导致系统性能下降,进而导致任务或至关重要的故障。这项研究提出了一种协同多重UV控制的方法,该方法使操作员能够在任务执行过程中在自动计划员的目标功能范围内动态修改权重。在回顾了功能分配文献之后,使用了适当的分类法来评估人与动态目标功能交互的可能影响。该分析表明,通过使操作员的目标与自动计划员保持一致,可以减少评估和选择计划所需的认知步骤。修改了多个UV模拟测试台,以提供两种类型的动态目标函数。操作员可以选择一个数量,也可以选择均等加权数量的任意组合,以供自动计划者用于评估任务计划。为了比较使用这些动态目标函数的操作员的性能和工作量与使用静态目标函数的操作员的性能和工作量,进行了一项实验,其中30名参与者在合成环境中执行了UV任务。设计了两种方案,一种方案在整个方案中交战规则(ROE)保持不变,而另一种方案则是ROE发生了变化。实验结果表明,使用具有多个目标的动态目标函数时,操作员将其性能和置信度评为最高。允许操作员选择多个目标,从而减少了对目标功能的修改,增强了态势感知(SA)并增加了备用的心理能力。限制操作员为自动化计划者选择单个目标会导致在执行单个任务目标(例如找到新目标)方面表现出色,同时还会导致违反ROE的行为,例如在未经许可的情况下销毁目标。尽管动态目标4和静态目标4的功能在系统性能或工作负载上没有显着差异,但是在执行任务期间,随着ROE的变化,操作员具有更高的性能和更高的SA。尽管这些结果表明动态目标功能可能是有益的,但仍需要进一步研究以探索动态目标功能和不断变化的任务目标对多重紫外线控制中的人员绩效和工作量的影响。

著录项

  • 作者

    Clare Andrew S;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号