首页> 外文OA文献 >Patient-specific seizure onset detection
【2h】

Patient-specific seizure onset detection

机译:患者特异性癫痫发作检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approximately one percent of the world's population exhibits symptoms of epilepsy, a serious disorder of the central nervous system that predisposes those affected to experiencing recurrent seizures. The risk of injury associated with epileptic seizures might be mitigated by the use of a device that can reliably detect or predict the onset of seizure episodes and then warn caregivers of the event. In a hospital this device could also be used to initiate time-sensitive clinical procedures necessary for characterizing epileptic syndromes. This thesis discusses the design of a real-time, patient-specific method that can be used to detect the onset of epileptic seizures in non-invasive EEG, and then initiate time-sensitive clinical procedures like ictal SPECT. We adopt a patient-specific approach because of the clinically observed consistency of seizure and non-seizure EEG characteristics within patients, and their great heterogeneity across patients. We also treat patient-specific seizure onset detection as a binary classification problem. Our observation is a multi-channel EEG signal; its features include amplitude, fundamental frequency, morphology, and spatial localization on the scalp; and it is classified as an instance of non-seizure or seizure EEG based on the learned features of training examples from a single patient. We use a multi-level wavelet decomposition to extract features that capture the amplitude, fundamental frequency, and morphology of EEG waveforms. These features are then classified using a support vector machine or maximum-likelihood classifier trained on a patient's seizure and non-seizure EEG; non-seizure EEG includes normal and artifact contaminated EEG from various states of consciousness.
机译:世界上约有百分之一的人表现出癫痫病的症状,这是一种严重的中枢神经系统疾病,使受影响的人容易复发。癫痫发作相关的受伤风险可以通过使用一种能够可靠地检测或预测癫痫发作的发作并随后警告护理人员的设备来减轻。在医院中,该设备还可用于启动表征癫痫综合征所需的对时间敏感的临床程序。本文讨论了一种实时,针对患者的方法的设计,该方法可用于检测非侵入性脑电图中癫痫发作的发作,然后启动对时间敏感的临床程序,如发作性SPECT。由于临床观察到的患者内癫痫发作和非癫痫发作脑电图特征的一致性以及它们在患者之间的巨大异质性,我们采用了针对患者的方法。我们还将患者特定的癫痫发作检测作为二元分类问题。我们观察到的是多通道脑电信号。其特征包括头皮上的振幅,基频,形态和空间定位;根据从单个患者那里获得的训练样本的特征,将其分类为非癫痫或癫痫性脑电图实例。我们使用多级小波分解来提取可捕获EEG波形的幅度,基频和形态的特征。然后使用支持向量机或最大似然分类器对这些特征进行分类,该分类器根据患者的癫痫发作和非癫痫发作的脑电图进行训练;非癫痫发作的脑电图包括来自各种意识状态的正常和人工污染的脑电图。

著录项

  • 作者

    Shoeb Ali Hossam 1981-;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号