首页> 外文OA文献 >Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft
【2h】

Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft

机译:多个拉格朗日系统的非线性控制与同步及其在系绳编队飞行航天器中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation focuses on the synchronization of multiple dynamical systems using contraction theory, with applications to cooperative control of multi-agent systems and synchronization of interconnected dynamics such as tethered formation flight. Inspired by stable combinations of biological systems, contraction nonlinear stability theory provides a systematic method to reduce arbitrarily complex systems into simpler elements. One application of oscillation synchronization is a fully decentralized nonlinear control law, which eliminates the need for any inter-satellite communications. We use contraction theory to prove that a nonlinear control law stabilizing a single-tethered spacecraft can also stabilize arbitrarily large circular arrays of tethered spacecraft, as well as a three-spacecraft inline configuration. The convergence result is global and exponential due to the nature of contraction analysis. The proposed decentralized control strategy is further extended to robust adaptive control in order to account for model uncertainties. Numerical simulations and experimental results validate the exponential stability of the tethered formation arrays by implementing a tracking control law derived from the reduced dynamics.
机译:本文以收缩理论为基础,研究了多个动力学系统的同步问题,并将其应用于多智能体系统的协同控制和诸如束缚编队飞行等相互联系的动力学的同步中。受生物系统的稳定组合启发,收缩非线性稳定性理论提供了一种将任意复杂系统简化为简单元素的系统方法。振荡同步的一种应用是完全分散的非线性控制律,它消除了对任何卫星间通信的需求。我们使用收缩理论来证明,稳定一个系留航天器的非线性控制定律还可以稳定任何较大的系留航天器圆形阵列以及一个三航天器串联配置。由于收缩分析的性质,收敛结果是全局的和指数的。所提出的分散控制策略进一步扩展到鲁棒的自适应控制,以解决模型的不确定性。数值模拟和实验结果通过实施从减小的动力学推导的跟踪控制定律,验证了拴系地层阵列的指数稳定性。

著录项

  • 作者

    Chung Soon-Jo 1976-;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号