首页> 外文OA文献 >Strained SiGe-channel p-MOSFETs : impact of heterostructure design and process technology
【2h】

Strained SiGe-channel p-MOSFETs : impact of heterostructure design and process technology

机译:应变siGe沟道p-mOsFET:异质结构设计和工艺技术的影响

摘要

Conventional Si CMOS intrinsic device performance has improved by 17% per year over the last 30 years through scaling of the gate length of the MOSFET along with process innovations such as the super-steep retrograde channel doping and ultra shallow source-drain junctions. In order to continue performance scaling with gate length for the 90 nm node and beyond (physical gate length 45 nm) an increase in the carrier mobility through the introduction of strain to the Si channel was required. To continue this scaling down to gate lengths of 10 nm new channel materials with superior mobility will be required. Superior hole mobility (up to 10X enhancement over bulk Si channels) and compatibility with mainstream Si processing technology make compressively strained SiGe an attractive channel material for sub 45 nm p-MOSFETs. This research investigates strained SiGe as a suitable channel material for p-MOSFETs using SiGe grown pseudomorphically on both relaxed SiGe and bulk Si substrates. Some of the fundamental and technological challenges that must be faced in order to incorporate SiGe channel materials are addressed, including the impact of heterostructure composition and SiGe channel thickness on mobility and MOSFET off-state leakage, as well as critical thickness and thermal budget constraints. In particular, the impact of the strained channel thickness on mobility is analyzed in detail. This work provides a detailed analysis of the design space for the SiGe heterostructure required to evaluate the trade off's between mobility enhancement, subthreshold characteristics and ease of integration with conventional CMOS processing in order to determine the optimum device structure.
机译:在过去的30年中,通过缩放MOSFET的栅极长度以及诸如超陡峭逆向沟道掺杂和超浅源极-漏极结之类的工艺创新,传统的Si CMOS固有器件的性能每年提高了17%。为了用90 nm节点及更高的栅极长度(物理栅极长度45 nm)继续进行性能缩放,需要通过将应变引入Si沟道来提高载流子迁移率。为了继续缩小至10 nm的栅极长度,将需要具有更高迁移率的新沟道材料。出色的空穴迁移率(比块状Si沟道提高了10倍)以及与主流Si处理技术的兼容性,使得压缩应变SiGe成为低于45 nm p-MOSFET的有吸引力的沟道材料。这项研究调查了应变SiGe作为在pSiMOSFET上合适的沟道材料的问题,该方法使用了在松弛SiGe和块状Si衬底上假晶生长的SiGe。解决了掺入SiGe沟道材料必须面对的一些基本和技术挑战,包括异质结构组成和SiGe沟道厚度对迁移率和MOSFET关态漏电流的影响,以及关键的厚度和热预算约束。特别是,详细分析了应变通道厚度对迁移率的影响。这项工作对SiGe异质结构的设计空间进行了详细分析,以评估迁移率增强,亚阈值特性以及与常规CMOS工艺集成的简便性之间的折衷,从而确定最佳的器件结构。

著录项

  • 作者

    Ní Chléirigh Cáit;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号