Markov Decision Processes (MDPs) model problems of sequential decision-making under uncertainty. They have been studied and applied extensively. Nonetheless, there are two major barriers that still hinder the applicability of MDPs to many more practical decision making problems: * The decision maker is often lacking a reliable MDP model. Since the results obtained by dynamic programming are sensitive to the assumed MDP model, their relevance is challenged by model uncertainty. * The structural and computational results of dynamic programming (which deals with expected performance) have been extended with only limited success to accommodate risk-sensitive decision makers. In this thesis, we investigate two ways of dealing with uncertain MDPs and we develop a new connection between robust control of uncertain MDPs and risk-sensitive control of dynamical systems. The first approach assumes a model of model uncertainty and formulates the control of uncertain MDPs as a problem of decision-making under (model) uncertainty. We establish that most formulations are at least NP-hard and thus suffer from the "'curse of uncertainty." The worst-case control of MDPs with rectangular uncertainty sets is equivalent to a zero-sum game between the controller and nature.
展开▼