首页> 外文OA文献 >Multi-channel blind system identification for central hemodynamic monitoring
【2h】

Multi-channel blind system identification for central hemodynamic monitoring

机译:中心血流动力学监测的多通道盲系统识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multi-channel Blind System Identification (MBSI) is a technique for estimating both an unknown input and unknown channel dynamics from simultaneous output measurements at different channels through which the input signal propagates. It is a powerful tool particularly for the identification and estimation of dynamical systems in which a sensor, for measuring the input, is difficult to place. All of the existing MBSI algorithms, however, are not applicable to multi-channel systems sharing common dynamics among the channels, since these algorithms, by nature, exploit "differences" among the multiple channel dynamics. This requirement renders the MBSI algorithms useless in systems that have both a lumped-parameter nature and a distributed nature; all channels in a system of this type share poles dictated by the lumped-parameter dynamics. To overcome this difficulty, this thesis investigates a new approach, Intermediate Input Identification (IIID). This thesis proves that the distinct dynamics in each channel can be identified up to a scalar factor even when common dynamics are present. Based on this discovery, the MBSI problem is reformulated and an intermediate input is introduced, which integrates the original system input and the common dynamics shared by all the channels. The two-step IIID approach is developed to solve the problem: first, the distinct dynamics are identified from the outputs; second, the common dynamics are identified from the intermediate input by exploiting the zero-input response of the system. The identifiability conditions are thoroughly investigated. The sufficient and necessary conditions and the relationship between the linear-complexity condition of the original input and that of the intermediate input are derived in this thesis.
机译:多通道盲系统识别(MBSI)是一种用于根据输入信号传播通过的不同通道上同时进行的输出测量来估算未知输入和未知通道动态的技术。这是一个功能强大的工具,特别是用于动态系统的识别和估算,其中很难放置用于测量输入的传感器。但是,所有现有的MBSI算法都不适用于在通道之间共享公共动态的多通道系统,因为这些算法本质上利用了多通道动态之间的“差异”。这一要求使得MBSI算法在集总参数性质和分布式性质的系统中都无法使用。这种系统中的所有通道都共享由集总参数动力学决定的极点。为了克服这个困难,本文研究了一种新的方法,中间输入识别(IIID)。本论文证明,即使存在共同的动力学,也可以识别每个通道中不同的动力学,直到标量因子为止。基于此发现,重新设计了MBSI问题,并引入了中间输入,该中间输入将原始系统输入和所有通道共享的公共动力学集成在一起。开发了两步式IIID方法来解决该问题:首先,从输出中识别出不同的动态;其次,通过利用系统的零输入响应,从中间输入中识别出共同的动力。对可识别性条件进行了彻底调查。本文推导了原始输入和中间输入的线性复杂度条件的充要条件和关系。

著录项

  • 作者

    Zhang Yi 1973-;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号