首页> 外文OA文献 >Non-linear mechanical behavior of polydimethylsiloxane (PDMS): application to the manufacture of microfluidic devices
【2h】

Non-linear mechanical behavior of polydimethylsiloxane (PDMS): application to the manufacture of microfluidic devices

机译:聚二甲基硅氧烷(pDms)的非线性机械行为:应用于微流体装置的制造

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soft-lithography is a low-cost and convenient microfabrication technique that is becoming increasingly popular in the manufacture of microfluidic devices. A typical elastomer used in soft-lithography is polydimethylsiloxane (PDMS), an organic polymer that is commercially available, inexpensive, optically transparent, permeable to gases, and nontoxic. For soft-lithography to become a viable microfabrication technique for the commercial manufacture of microfluidic devices, several issues concerning the mechanical behavior of this material must be considered and addressed. We are currently working on the following materials-related issues that are critical to the development of this process for mass production:•Multilayer microfluidic devices are made by layering thin films having alternating ratios of monomer to curing agent, in order to facilitate bonding between the layers. Common mixing ratios of monomer to curing agent are 5:1, 10:1, and 20:1. Characterization of the mechanical behavior of these materials with different compositions is necessary in the design of these devices. We have conducted uniaxial tension tests at the macroscale and found that the monomer-to-curing agent ratio contributes significantly to the non-linear stress-strain behavior of PDMS (see adjoining figure). We are working on uniaxial tension tests on microscale specimens which are approximately 10 µm thick and have a gauge width of 1 mm; this smaller scale is representative of actual dimensions in microfluidic devices.•The fabrication of microfluidic devices involves curing the mixture of PDMS monomer and curing agent on a mold. Currently, a cast layer is peeled off the mold slowly by hand, being careful not to tear the material. We shall work on modeling the PDMS-substrate interface decohesion response to facilitate the design of an automated demolding process. To simulate the demolding of the PDMS during fabrication, we plan to conduct peel experiments of PDMS at various stages of cure from silicon, plastic, glass and other substrates that are commonly used; and using the experimental results, determine parameters for interface constitutive models for use in failure prediction during demolding. •We shall conduct experimental and numerical studies to optimize the design parameters, like the thickness of different layers, composition of materials used, and geometry of microchannels for microfluidic devices. The layers within a multilayer microfluidic device appear to bond irreversibly, but the strength of the bond is not understood. We plan to conduct peel experiments to test the bond between different PDMS layers of different compositions. The channels within the microfluidic devices are usually pressurized during actuation, so we also plan to conduct blister tests to understand the interface failure behavior between the different layers of a device.•Reliability of these devices is an issue that has not been addressed. All devices are currently made in a laboratory environment, and the limits of pressure magnitude and cyclic frequency of these devices have not been explored. We plan to experimentally study the fatigue behavior of these devices, and develop appropriate guidelines for reliable use of these devices.
机译:软光刻是一种低成本且方便的微制造技术,在微流控设备的制造中正变得越来越流行。用于软光刻的典型弹性体是聚二甲基硅氧烷(PDMS),这是一种有机聚合物,可商购,廉价,光学透明,可透过气体且无毒。为了使软光刻法成为用于微流体装置的商业制造的可行的微制造技术,必须考虑并解决与该材料的机械性能有关的几个问题。目前,我们正在研究下列与材料相关的问题,这些问题对于大规模生产此工艺的开发至关重要:•多层微流体器件是通过将单体与固化剂比率交替的薄膜层叠在一起制成的,以促进它们之间的粘合。层。单体与固化剂的常见混合比例为5:1、10:1和20:1。在这些设备的设计中,必须对具有不同成分的这些材料的机械性能进行表征。我们已经在宏观上进行了单轴拉伸试验,发现单体与固化剂的比例对PDMS的非线性应力-应变行为有重要贡献(请参见附图)。我们正在对大约10 µm厚,标距为1 mm的微型样品进行单轴拉伸试验;这种较小的比例代表了微流体设备的实际尺寸。•微流体设备的制造涉及在模具上固化PDMS单体和固化剂的混合物。目前,用手小心地将铸模层从模具上剥离,注意不要撕裂材料。我们将对PDMS-基材界面脱粘响应进行建模,以简化自动脱模过程的设计。为了模拟制造过程中PDMS的脱模,我们计划在固化的各个阶段从硅,塑料,玻璃和其他常用基材进行PDMS剥离实验。并使用实验结果确定用于脱模过程中的故障预测的界面本构模型的参数。 •我们将进行实验和数值研究,以优化设计参数,例如不同层的厚度,所用材料的成分以及微流控设备微通道的几何形状。多层微流体装置内的各层似乎不可逆地结合,但结合强度尚不清楚。我们计划进行剥离实验,以测试不同组成的不同PDMS层之间的键合。微流体设备内的通道通常在致动过程中处于加压状态,因此我们还计划进行起泡测试以了解设备不同层之间的界面故障行为。•这些设备的可靠性是一个尚未解决的问题。目前,所有设备都是在实验室环境中制造的,尚未探索这些设备的压力幅度和循环频率的极限。我们计划通过实验研究这些设备的疲劳行为,并为可靠使用这些设备制定适当的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号