首页> 外文OA文献 >Engineering the optical properties of subwavelength devices and materials
【2h】

Engineering the optical properties of subwavelength devices and materials

机译:设计亚波长器件和材料的光学特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many applications demand materials with seemingly incompatible optical characteristics. For example, immersion photolithography is a resolution enhancing technique used to fabricate the ever-shrinking nanostructures in integrated circuits but requires a material that has-at the same time--a large index of refraction and negligible optical loss. Other applications require devices that have optical properties that seem exorbitant given the constraints posed by the geometry, materials, and desired performance of these devices. The superconducting nanowire single-photon detector (SNSPD) is one such device that, on the one hand, needs to absorb and detect single telecom-wavelength photons (A = 1.55 pm) with near-perfect efficiency, but on the other hand, has an absorber that is subwavelength in its thickness (A/390). For both cases, it is simply not enough to look for alternative materials with the desired optical properties, because the materials may not exist in nature. In fact, it has become necessary to engineer the optical properties of these devices and materials using other means. In this thesis, we have investigated how the optical properties of materials and devices can be engineered for specific applications. In the first half of the thesis, we focused on theoretical schemes that use subwave-length, resonant constituents to realize a material with interesting optical properties. We proposed a scheme that can achieve high index (n > 6) accompanied with optical gain for an implementation involving atomic vapors. We then explored the applicability of this high-index system to immersion lithography and found that optical gain is problematic. We solved the issue of optical gain by proposing a scheme where a mixture of resonant systems is used. We predicted that this system can yield a high refractive index, low refractive index, anomalous dispersion, or normal dispersion, all with optical transparency. In the second half, we studied the optical properties of SNSPDs through theoretical and experimental methods. In the study, we first constructed a numerical model that predicts the absorptance of our devices. We then fabricated SNSPDs with varying geometries and engineered a preprocessing-free proximity-effect correction technique to realize uniform linewidths. We then constructed an optical apparatus to measure the absorptance of our devices and showed that the devices are sensitive to the polarization of single photons.
机译:许多应用都需要具有看似不兼容的光学特性的材料。例如,浸没式光刻技术是一种分辨率增强技术,用于制造集成电路中不断缩小的纳米结构,但需要一种同时具有大折射率和可忽略不计的光学损耗的材料。在其他应用中,考虑到由这些设备的几何形状,材料和所需性能带来的限制,这些设备的光学性能似乎过高。超导纳米线单光子检测器(SNSPD)就是这样一种设备,一方面需要以接近完美的效率吸收和检测单个电信波长光子(A = 1.55 pm),但另一方面具有厚度小于亚波长的吸收体(A / 390)。对于这两种情况,仅仅寻找具有所需光学特性的替代材料是远远不够的,因为这些材料可能不存在于自然界中。实际上,已经有必要使用其他手段来设计这些设备和材料的光学特性。在本文中,我们研究了如何针对特定应用设计材料和器件的光学特性。在论文的前半部分,我们集中于使用亚波长谐振成分来实现具有有趣光学特性的材料的理论方案。我们提出了一种方案,该方案可实现高指数(n> 6)并伴随光学增益,以实现涉及原子蒸气的实现。然后,我们探索了该高折射率系统在浸没式光刻中的适用性,并发现光学增益存在问题。通过提出一种使用混合谐振系统的方案,我们解决了光学增益问题。我们预测该系统可以产生高折射率,低折射率,异常色散或正常色散,并且全部具有光学透明性。在下半年,我们通过理论和实验方法研究了SNSPDs的光学性质。在研究中,我们首先构建了一个预测我们设备吸收率的数值模型。然后,我们制造了具有不同几何形状的SNSPD,并设计了一种无需预处理的接近效应校正技术,以实现均匀的线宽。然后,我们构造了一个光学设备来测量设备的吸收率,并表明设备对单个光子的偏振敏感。

著录项

  • 作者

    Anant Vikas 1980-;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号