首页> 外文OA文献 >A thermo-mechanical finite deformation theory of plasticity for amorphous polymers : application to micro-hot-embossing of poly(methyl methacrylate)
【2h】

A thermo-mechanical finite deformation theory of plasticity for amorphous polymers : application to micro-hot-embossing of poly(methyl methacrylate)

机译:非晶态聚合物塑性的热机械有限变形理论:聚甲基丙烯酸甲酯的微热压花应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Amorphous thermoplastic polymers are important engineering materials; however, their nonlinear, strongly temperature- and rate-dependent elastic-visco-plastic behavior has, until now, not been very well understood. The behavior has previously been modeled with mixed success by existing constitutive theories. As a result, there is currently no generally agreed upon theory to model the large-deformation, thermo-mechanically coupled, elasto-visco-plastic response of amorphous polymeric materials spanning their glass transition temperatures. What is needed is a unified constitutive framework that is capable of capturing the transition from a visco-elastic-plastic solidlike response below the glass transition temperature, to a rubbery-viscoelastic response above the glass transition temperature, to a fluid-like response at yet higher temperatures. We have developed a continuum-mechanical constitutive theory aimed to fill this need. The theory has been specialized to represent the salient features of the mechanical response of poly(methyl methacrylate) in a temperature range spanning room temperature to 60C above the glass transition temperature #g 110C of the material, in a strain-rate range of 10-4/s to 10-1/s, and under compressive stress states in which this material does not exhibit crazing. We have implemented our theory in the finite element program ABAQUS/Explicit. The numerical simulation capability of the theory is demonstrated with simulations of the micron-scale hot-embossing process for manufacture of microfluidic devices.
机译:非晶热塑性聚合物是重要的工程材料。然而,到目前为止,它们的非线性,强烈依赖温度和速率的弹性-粘塑性行为尚未得到很好的理解。先前已经通过现有的本构理论对行为进行了模拟,并取得了成功。结果,目前尚无普遍接受的理论来模拟非晶态聚合材料在其玻璃化转变温度范围内的大变形,热机械耦合,弹黏粘塑性响应。需要一种统一的本构框架,该框架能够捕获从低于玻璃化转变温度的粘弹塑性固相响应到高于玻璃化转变温度的橡胶状粘弹性响应到迄今为止的流体状响应的过渡。更高的温度。我们已经开发出一种旨在满足这一需求的连续力学本构理论。该理论经过专门研究,可以代表在室温至材料的玻璃化转变温度#g 110C以上的60°C的温度范围内,温度范围为10-的聚甲基丙烯酸甲酯的机械响应的显着特征。 4 / s至10-1 / s,并且在这种材料不会出现龟裂的压应力状态下。我们已经在有限元程序ABAQUS / Explicit中实现了我们的理论。该理论的数值模拟能力通过模拟微尺度热压印工艺制造微流体装置得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号