首页> 外文OA文献 >Context-based motion retrieval using vector space model
【2h】

Context-based motion retrieval using vector space model

机译:基于矢量空间模型的基于上下文的运动检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motion retrieval is the problem of retrieving highly relevant motions in a timely manner. The principal challenge is to characterize the similarity between two motions effectively, which is tightly related to the gap between the motion data's representation and its semantics. Our approach uses vector space model to measure the similarities among motions, which are made discrete using the vocabulary technique and transformation invariant using the relational feature model. In our approach, relational features are first extracted from motion data. then such features are clustered into a motion vocabulary. Finally motions are turned into bag of words and retrieved using vector-space model. We implemented this new system and tested it on two benchmark databases composed of real world data. Two existing methods, the dynamics time warping method and the binary feature method, are implemented for comparison. The results shows that our system are comparable in effectiveness with the dynamic time warping system, but runs 100 to 400 times faster. In comparison to retrieval with binary features, it is just as fast but more accurate and practical.The success of our system points to several additional improvements. Our experiments reveal that the velocity features improve the relevance of retrieved results, but more effort should be dedicated to determining the best set of features for motion retrieval. The same experiments should be performed on large databases and in particular to test how this performance generalizes on test motions outside the original database. The alternative vocabulary organizations, such as vocabulary tree and random forest, should be investigated because they can improve our approach by providing more flexibility to the similarity scoring model and reducing the approximation error of the vocabulary. Because the bag of words model ignores the temporal ordering of key features, a wavelet model should also be explored as a mechanism to encode features across different time scales.
机译:运动检索是及时检索高度相关的运动的问题。主要的挑战是有效地刻画两个运动之间的相似性,这与运动数据的表示及其语义之间的差距紧密相关。我们的方法使用向量空间模型来测量运动之间的相似性,这些运动使用词汇技术离散化,并使用关系特征模型使变换不变。在我们的方法中,首先从运动数据中提取关系特征。然后将这些特征聚类为运动词汇。最终,运动被转换成单词袋,并使用向量空间模型进行检索。我们实施了这个新系统,并在两个由实际数据组成的基准数据库中对其进行了测试。为了进行比较,实现了两种现有方法,动力学时间规整方法和二进制特征方法。结果表明,我们的系统在有效性上与动态时间规整系统相当,但运行速度快了100到400倍。与具有二进制功能的检索相比,它具有同样的速度,但更加准确和实用。我们系统的成功表明了其他一些改进。我们的实验表明,速度特征可以改善检索结果的相关性,但是应该花更多的精力来确定运动检索的最佳特征集。应该在大型数据库上执行相同的实验,尤其是要测试这种性能如何在原始数据库之外的测试动作上得到概括。应该研究替代词汇组织,例如词汇树和随机森林,因为它们可以通过为相似性评分模型提供更大的灵活性并减少词汇的近似误差来改善我们的方法。由于词袋模型忽略了关键特征的时间顺序,因此小波模型也应作为一种在不同时标上对特征进行编码的机制进行研究。

著录项

  • 作者

    Zhang Zhunping;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号