首页> 外文OA文献 >Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
【2h】

Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

机译:用于可压缩Navier-stokes方程的高阶不连续Galerkin离散化的多重网格解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A high-order discontinuous Galerkin finite element discretization and p-multigrid solution procedure for the compressible Navier-Stokes equations are presented. The discretization has an element-compact stencil such that only elements sharing a face are coupled, regardless of the solution space. This limited coupling maximizes the effectiveness of the p-multigrid solver, which relies on an element-line Jacobi smoother. The element-line Jacobi smoother solves implicitly on lines of elements formed based on the coupling between elements in a p = 0 discretization of the scalar transport equation. Fourier analysis of 2-D scalar convection-diffusion shows that the element-line Jacobi smoother as well as the simpler element Jacobi smoother are stable independent of p and flow condition. Mesh refinement studies for simple problems with analytic solutions demonstrate that the discretization achieves optimal order of accuracy of O(h(̂p+l)). A subsonic, airfoil test case shows that the multigrid convergence rate is independent of p but weakly dependent on h. Finally, higher-order is shown to outperform grid refinement in terms of the time required to reach a desired accuracy level.
机译:给出了可压缩Navier-Stokes方程的高阶不连续Galerkin有限元离散化和p-多重网格求解程序。离散化具有一个元素紧凑的模具,这样,无论解空间如何,都仅耦合共享脸部的元素。这种有限的耦合使p-multigrid求解器的效率最大化,后者依赖于元素线Jacobi平滑器。元素线Jacobi平滑器隐含地求解基于标量输运方程的p = 0离散化时基于元素之间的耦合而形成的元素线。二维标量对流扩散的傅立叶分析表明,单元线雅可比平滑器和简单单元雅可比平滑器独立于p和流动条件而稳定。用解析解对简单问题进行网格细化研究表明,离散化可实现O(h(Ìp+ l))的最佳精度。亚音速机翼测试案例表明,多重网格收敛速度与p无关,而与h的相关性很小。最后,就达到所需精度水平所需的时间而言,高阶显示出优于网格细化的效果。

著录项

  • 作者

    Oliver Todd A. 1980-;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号