首页> 外文OA文献 >Neural prosthetics for paralysis : algorithms and low-power analog architectures for decoding neural signals
【2h】

Neural prosthetics for paralysis : algorithms and low-power analog architectures for decoding neural signals

机译:用于瘫痪的神经修复术:用于解码神经信号的算法和低功率模拟架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis develops a system for adaptively and automatically learning to interpret patterns of electrical activity in neuronal populations in a real-time, on-line fashion. The system is primarily intended to enable the long-term implantation of low-power, microchip-based recording and decoding hardware in the brains of human patients in order to treat neurologic disorders. The decoding system developed in the present work interprets neural signals from the parietal cortex encoding arm movement intention, suggesting that the system could function as the decoder in a neural prosthetic limb, potentially enabling a paralyzed person to control an artificial limb just as the natural one was controlled, through thought alone. The same decoder is also used to interpret the activity of a population of thalami neurons encoding head orientation in absolute space. The success of the decoder in that context motivates the development of a model of generalized place cells to explain how networks of neurons adapt the configurations of their receptive fields in response to new stimuli, learn to encode the structure of new parameter spaces, and ultimately retrace trajectories through such spaces in the absence of the original stimuli.
机译:本论文开发了一种系统,该系统可以自适应地自动学习,以实时,在线的方式解释神经元群体中的电活动模式。该系统主要用于将低功率,基于微芯片的记录和解码硬件长期植入人类患者的大脑中,以治疗神经系统疾病。本工作中开发的解码系统解释了来自顶叶皮质编码臂运动意图的神经信号,表明该系统可以充当神经假肢中的解码器,有可能使瘫痪者像自然人一样控制人造肢体。被控制,仅通过思考。相同的解码器还用于解释在绝对空间中编码头部方向的丘脑神经元群体的活动。在这种情况下,解码器的成功推动了广义位置细胞模型的发展,以解释神经元网络如何响应新的刺激而适应其接受域的配置,学会对新参数空间的结构进行编码并最终回溯在没有原始刺激的情况下穿过这些空间的轨迹。

著录项

  • 作者

    Rapoport Benjamin Isaac;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号