首页> 外文OA文献 >Characterization and design of non-adiabatic micro-compressor impeller and preliminary design of self-sustained micro engine system
【2h】

Characterization and design of non-adiabatic micro-compressor impeller and preliminary design of self-sustained micro engine system

机译:非绝热微型压缩机叶轮的表征与设计及自持式微型发动机系统的初步设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As part of the MIT research program on micro-engines (of size [approximately] 1 cm), this thesis defines concepts and designs to improve micro-turbomachinery and overall system performance. Three-dimensional Reynolds-averaged Navier-Stokes computations (FLUENT) have been carried out to quantify the performance limiting processes in micro-impellers. These processes include (i) heat transfer to the compressor flow responsible for up to 25 points efficiency penalty, (ii) impeller casing drag (17 points penalty) and (iii) passage boundary layer loss (10 points penalty). The magnitude of the first effect is a result of the engine small length scale selection and is characterized by the total heat to impeller flow as fraction of inlet flow enthalpy. The magnitudes of the last two effects can be attributed to low Reynolds number. Scaling laws for elucidating the parametric controlling trend in these effects have been formulated. A mean-line analysis and design tool based on the above micro-impeller characterization is developed to formulate design guidelines. The guidelines show that the optimal micro-impeller geometry changes with impeller wall temperature, an effect, not present for large turbomachinery. In particular, impeller inlet angle, back-sweep angle, solidity and radial size for peak efficiency decrease with increasing impeller wall temperature. This behavior is a result of the competing effects of geometry on (i) aerodynamic loss and (ii) on heat transfer to impeller flow. In accord with these findings, CFD calculations show that configuring a micro-impeller excluding the heat addition as a design variable can incur a penalty of more than 10 efficiency points. An aero-thermal system model is developed to enable micro-engine system analysis and
机译:作为麻省理工学院有关微型发动机(尺寸约为1厘米)的研究计划的一部分,本文定义了一些概念和设计,以改善微型涡轮机械和整个系统的性能。已经进行了三维雷诺平均Navier-Stokes计算(FLUENT)以量化微型叶轮中的性能限制过程。这些过程包括(i)传至压缩机流的热量最多造成25点效率损失,(ii)叶轮机壳阻力(17点损失)和(iii)通道边界层损失(10点损失)。第一种效果的大小是发动机选择小比例尺的结果,其特征是叶轮流的总热量占进气流焓的比例。后两种效应的大小可归因于雷诺数低。已经制定了比例定律,以阐明这些效应中的参数控制趋势。开发了基于上述微叶轮特性的均线分析和设计工具,以制定设计指南。指南显示,最佳的微型叶轮几何形状会随叶轮壁温度的变化而变化,这种影响在大型涡轮机械中不存在。特别是,随着叶轮壁温度的升高,叶轮的入口角,后掠角,坚固性和达到最大效率的径向尺寸会减小。这种行为是由于几何形状对(i)空气动力损失和(ii)对叶轮流的热传递产生竞争影响的结果。根据这些发现,CFD计算表明,配置不包括热量添加的微型叶轮作为设计变量会导致超过10个效率点的损失。开发了一个空气热系统模型,以进行微引擎系统分析和

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号