首页> 外文OA文献 >Structure and activity of protein-nanoparticle conjugates: towards a strategy for optimizing the interface
【2h】

Structure and activity of protein-nanoparticle conjugates: towards a strategy for optimizing the interface

机译:蛋白质 - 纳米颗粒缀合物的结构和活性:朝向优化界面的策略

摘要

Nanoparticle-protein conjugates have a variety of applications in imaging, sensing, assembly and control. The nanoparticle-protein interface is made of numerous complex interactions between protein side-chains and the nanoparticle surface, which are likely to affect protein structure and compromise activity. Ribonuclease S and cytochrome c are covalently linked to nanoparticles via attachment to a specific surface cysteine, with the goal of optimizing protein structure and activity, and understanding conditions that minimize non-specific adsorption. Protein behavior is explored as a function of the nanoparticle surface chemistry and material, the density of proteins on the nanoparticle surface, and the position of the labeled site. Ribonuclease S is attached to Au nanoparticles by utilizing its two-piece structure. Enzymatic activity is determined using RNA substrate with a FRET pair. Conjugation lowers the ribonucleatic activity, which is rationalized by the presence of negative charges and steric hindrance which impede RNA in reaching the active site. Cytochrome c is linked to Au and CoFe204 nanoparticles. The protein is denatured when the nanoparticle ligands are charged, but remains folded when neutral. The presence of salt in the buffer improves folding. This indicates that electrostatic interactions of charged amino acids with the charged ligands are prone to lead to protein denaturation. The attachment site can be controlled by mutations of surface residues to cysteines. Protein unfolding is more severe for nanoparticle attached in the vicinity of charged amino acids. Molecular dynamics simulations of the conjugate reveal that electrostatic interactions with· the nanoparticle ligand lead to local unfolding of [alpha]-helices of cyt c. Furthermore, the nanoparticle induces more structural disturbance when it is attached on the N- and C-terminal [alpha]-helices foldon, which is the most stable motif of cyt c and the most essential for folding.
机译:纳米蛋白质偶联物在成像,传感,组装和控制中具有多种应用。纳米粒子-蛋白质界面由蛋白质侧链和纳米粒子表面之间的许多复杂相互作用组成,这可能会影响蛋白质结构并损害活性。核糖核酸酶S和细胞色素c通过附着于特定的表面半胱氨酸与纳米颗粒共价连接,目的是优化蛋白质结构和活性,并了解使非特异性吸附最小化的条件。探索蛋白质行为是纳米粒子表面化学和材料,纳米粒子表面上蛋白质的密度以及标记位点位置的函数。核糖核酸酶S通过利用其两件式结构连接到Au纳米颗粒。使用带有FRET对的RNA底物测定酶活性。结合降低了核糖核酸的活性,这是由于存在负电荷和空间位阻,从而阻碍了RNA到达活性位点而合理化的。细胞色素c连接到Au和CoFe204纳米颗粒。当纳米粒子配体带电时,蛋白质会变性,但在中性时会保持折叠状态。缓冲液中盐的存在改善了折叠性。这表明带电荷的氨基酸与带电荷的配体的静电相互作用易于导致蛋白质变性。附着位点可以通过表面残基向半胱氨酸的突变来控制。对于附着在带电氨基酸附近的纳米粒子而言,蛋白质的展开更为严重。缀合物的分子动力学模拟表明,与纳米粒子配体的静电相互作用导致cyt c的α-螺旋的局部展开。此外,当纳米颗粒附着在N-和C-末端α-螺旋折叠上时,其引起更多的结构扰动,这是cyt c的最稳定的基序,也是折叠所必需的。

著录项

  • 作者

    Aubin-Tam Marie-Eve;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号