首页> 外文OA文献 >Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology
【2h】

Numerical Simulation of an Oscillatory-Type Tidal Current Powered Generator Based on Robotic Fish Technology

机译:基于机器鱼技术的振荡型潮流发电机数值模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The generation of clean renewable energy is becoming increasingly critical, as pollution and global warming threaten the environment in which we live. While there are many different kinds of natural energy that can be harnessed, marine tidal energy offers reliability and predictability. However, harnessing energy from tidal flows is inherently difficult, due to the harsh environment. Current mechanisms used to harness tidal flows center around propeller-based solutions but are particularly prone to failure due to marine fouling from such as encrustations and seaweed entanglement and the corrosion that naturally occurs in sea water. In order to efficiently harness tidal flow energy in a cost-efficient manner, development of a mechanism that is inherently resistant to these harsh conditions is required. One such mechanism is a simple oscillatory-type mechanism based on robotic fish tail fin technology. This uses the physical phenomenon of vortex-induced oscillation, in which water currents flowing around an object induce transverse motion. We consider two specific types of oscillators, firstly a wing-type oscillator, in which the optimal elastic modulus is being sort. Secondly, the optimal selection of shape from 6 basic shapes for a reciprocating oscillating head-type oscillator. A numerical analysis tool for fluid structure-coupled problems—ANSYS—was used to select the optimum softness of material for the first type of oscillator and the best shape for the second type of oscillator, based on the exhibition of high lift coefficients. For a wing-type oscillator, an optimum elastic modulus for an air-foil was found. For a self-induced vibration-type mechanism, based on analysis of vorticity and velocity distribution, a square-shaped head exhibited a lift coefficient of more than two times that of a cylindrically shaped head. Analysis of the flow field clearly showed that the discontinuous flow caused by a square-headed oscillator results in higher lift coefficients due to intense vortex shedding, and that stable operation can be achieved by selecting the optimum length to width ratio.
机译:随着污染和全球变暖威胁我们生活的环境,清洁可再生能源的产生变得越来越重要。尽管可以利用多种自然能源,但海洋潮汐能却具有可靠性和可预测性。然而,由于恶劣的环境,利用潮汐流的能量本质上是困难的。当前用于控制潮汐流的机制主要集中在基于螺旋桨的解决方案周围,但是由于结垢和海藻缠结以及海水中自然发生的腐蚀等海洋污染,特别容易导致故障。为了以成本有效的方式有效地利用潮汐流能,需要开发一种固有地抵抗这些恶劣条件的机构。一种这样的机制是基于机器人鱼尾鳍技术的简单振荡型机制。这利用了涡旋引起的振荡的物理现象,其中在物体周围流动的水流引起横向运动。我们考虑两种特定类型的振荡器,首先是机翼型振荡器,其中最佳弹性模量正在排序。其次,从6种基本形状中选择最佳形状,用于往复式振荡头型振荡器。基于高升力系数的展示,使用了一种用于流体结构耦合问题的数值分析工具ANSYS,以选择第一种类型的振荡器的最佳材料柔软度和第二种类型的振荡器的最佳形状。对于翼型振荡器,找到了翼型的最佳弹性模量。对于自激振动型机构,基于对涡度和速度分布的分析,方形头的升力系数是圆柱形头的两倍以上。对流场的分析清楚地表明,由于强烈的涡旋脱落,由方头振荡器引起的不连续流动会导致较高的升力系数,并且可以通过选择最佳的长宽比来实现稳定的运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号