首页> 外文OA文献 >Convergence rates for the estimation of two-dimensional distribution functions under association and estimation of the covariance of the limit empirical process
【2h】

Convergence rates for the estimation of two-dimensional distribution functions under association and estimation of the covariance of the limit empirical process

机译:在关联和估计经验过程的协方差下估计二维分布函数的收敛速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let Xn, n=1, be an associated and strictly stationary sequence of random variables, having marginal distribution function F. The limit in distribution of the empirical process, when it exists, is a centred Gaussian process with covariance function depending on terms of the form ?k(s, t)=P(X1 s, Xk+1 t)-F(s)F(t). We prove the almost sure consistency for the histogram to estimate each ?k and also to estimate the covariance function of the limit empirical process, identifying, for both, uniform almost sure convergence rates. The convergence rates depend on a suitable version of an exponential inequality. The rates obtained, assuming the covariances to decrease geometrically, are of order n-1/3log2/3nfor the estimator of ?k and of order n-1/3log5/3nfor the estimator of the covariance function.
机译:设Xn,n = 1,是随机变量的关联且严格平稳的序列,具有边际分布函数F。经验过程的分布极限(当存在时)是具有协方差函数的中心高斯过程,取决于该变量的项。形式Δk(s,t)= P(X 1 s,X k + 1 t)-F(s)F(t)。我们证明了直方图估计每个kk的几乎确定的一致性,并且还估计了极限经验过程的协方差函数,为这两个确定了统一的几乎确定的收敛速度。收敛速度取决于指数不等式的合适形式。假设协方差在几何上减小,则获得的速率对于Δk的估算器约为n-1 / 3log2 / 3n,对于协方差函数的估算器约为n-1 / 3log5 / 3n。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号