首页> 外文OA文献 >Synthesis of branched–backbone oligosaccharides of the pectic RG-I plant cell wall polysaccharide
【2h】

Synthesis of branched–backbone oligosaccharides of the pectic RG-I plant cell wall polysaccharide

机译:果胶RG-1植物细胞壁多糖的支链骨架寡糖的合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plants are an essential part of life on earth. They are the primary food producers, climate regulators and provide habitats for other organisms. The dependence of industrialized nations on plant cell walls due to their industrial applications has rapidly increased. Cellulose, hemicelluloses, and pectin polysaccharides are the main structural components of the plant cell wall. Among plant carbohydrates, pectins are highly heterogeneous polysaccharides. They are mainly found in the primary plant cell wall and contribute to various cell functions, including support, defense, signaling, and cell adhesion. Rhamnogalacturonan I (RG-I) is one of the structural classes of pectic polysaccharides, along with homogalacturonan, rhamnogalacturonan II, and xylogalacturonan. The chemical structure of RG-I is complex having a backbone consisting of alternating α-linked L-rhamnose and D-galacturonic acid units with numerous branches of galactan, arabinan, or arabinogalactan positioned at C-4 of the rhamnose residues. The use of defined oligosaccharides rather than isolated polysaccharides can aid in obtaining detailedinformation about biosynthetic pathways, plant evolution, and agronomical properties. Furthermore,biological testing can provide new insight into plant biology; important for plant preservation, engineering,and utilization of plants as a source of bioenergy. Present work towards defined RG-I substructures involvesa [4+3]-coupling to furnish a heptasaccharide backbone unit (see Figure 1). Moreover, installation of sidechains of different lengths and nature can be installed at the C-4 position of rhamnose unit. Finally, theseoligosaccharides will be deprotected to furnish target molecules to pursue biological studies.
机译:植物是地球生命的重要组成部分。他们是主要的食品生产者,气候调节者,并为其他生物提供栖息地。工业化国家由于其工业应用而对植物细胞壁的依赖性迅速增加。纤维素,半纤维素和果胶多糖是植物细胞壁的主要结构成分。在植物碳水化合物中,果胶是高度异质的多糖。它们主要存在于初级植物细胞壁中,并有助于多种细胞功能,包括支持,防御,信号传导和细胞粘附。鼠李半乳糖醛酸聚糖I(RG-1)与高半乳糖醛酸聚糖,鼠李糖半乳糖醛酸聚糖II和木糖半乳糖醛酸聚糖一起是果胶多糖的结构类别之一。 RG-1的化学结构是复杂的,具有由交替的α-连接的L-鼠李糖和D-半乳糖醛酸单元组成的主链,在鼠李糖残基的C-4处具有半乳聚糖,阿拉伯聚糖或阿拉伯半乳聚糖的许多分支。使用确定的寡糖而不是分离的多糖可以帮助获得有关生物合成途径,植物进化和农艺特性的详细信息。此外,生物学测试可以为植物生物学提供新的见解。对于植物的保存,工程化和利用植物作为生物能源非常重要。目前对确定的RG-1亚结构的研究涉及[4 + 3]偶联,以提供七糖骨架单元(见图1)。此外,可以将不同长度和性质的侧链安装在鼠李糖单元的C-4位置。最后,这些低聚糖将被脱保护以提供目标分子以进行生物学研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号