首页> 外文OA文献 >Sparse Signal Reconstruction with Multiple Side Information using Adaptive Weights for Multiview Sources
【2h】

Sparse Signal Reconstruction with Multiple Side Information using Adaptive Weights for Multiview Sources

机译:基于自适应权重的多视图源多边信息稀疏信号重构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work considers reconstructing a target signal in a context ofdistributed sparse sources. We propose an efficient reconstruction algorithmwith the aid of other given sources as multiple side information (SI). Theproposed algorithm takes advantage of compressive sensing (CS) with SI andadaptive weights by solving a proposed weighted $n$-$ell_{1}$ minimization.The proposed algorithm computes the adaptive weights in two levels, first eachindividual intra-SI and then inter-SI weights are iteratively updated at everyreconstructed iteration. This two-level optimization leads the proposedreconstruction algorithm with multiple SI using adaptive weights (RAMSIA) torobustly exploit the multiple SIs with different qualities. We experimentallyperform our algorithm on generated sparse signals and also correlated featurehistograms as multiview sparse sources from a multiview image database. Theresults show that RAMSIA significantly outperforms both classical CS and CSwith single SI, and RAMSIA with higher number of SIs gained more than the onewith smaller number of SIs.
机译:这项工作考虑在分布式稀疏源的上下文中重建目标信号。我们借助其他给定来源作为多边信息(SI)提出了一种有效的重构算法。拟议的算法通过解决拟议的加权$ n $-$ ell_ {1} $最小化,利用具有SI和自适应权重的压缩感知(CS)的优势。拟议算法计算两个级别的自适应权重,首先分别计算每个内部SI,然后再计算每次重构后,SI间权重都会迭代更新。这种两级优化导致了采用自适应权重(RAMSIA)的具有多个SI的所提出的重构算法,以稳健地利用具有不同质量的多个SI。我们对生成的稀疏信号以及来自多视图图像数据库的多视图稀疏源进行相关的特征直方图实验性地执行了我们的算法。结果表明,RAMSIA的性能明显优于传统CS和具有单个SI的CS,并且具有较高SI数量的RAMSIA的收益要高于具有较小SI数量的RAMSIA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号