This work considers reconstructing a target signal in a context ofdistributed sparse sources. We propose an efficient reconstruction algorithmwith the aid of other given sources as multiple side information (SI). Theproposed algorithm takes advantage of compressive sensing (CS) with SI andadaptive weights by solving a proposed weighted $n$-$ell_{1}$ minimization.The proposed algorithm computes the adaptive weights in two levels, first eachindividual intra-SI and then inter-SI weights are iteratively updated at everyreconstructed iteration. This two-level optimization leads the proposedreconstruction algorithm with multiple SI using adaptive weights (RAMSIA) torobustly exploit the multiple SIs with different qualities. We experimentallyperform our algorithm on generated sparse signals and also correlated featurehistograms as multiview sparse sources from a multiview image database. Theresults show that RAMSIA significantly outperforms both classical CS and CSwith single SI, and RAMSIA with higher number of SIs gained more than the onewith smaller number of SIs.
展开▼
机译:这项工作考虑在分布式稀疏源的上下文中重建目标信号。我们借助其他给定来源作为多边信息(SI)提出了一种有效的重构算法。拟议的算法通过解决拟议的加权$ n $-$ ell_ {1} $最小化,利用具有SI和自适应权重的压缩感知(CS)的优势。拟议算法计算两个级别的自适应权重,首先分别计算每个内部SI,然后再计算每次重构后,SI间权重都会迭代更新。这种两级优化导致了采用自适应权重(RAMSIA)的具有多个SI的所提出的重构算法,以稳健地利用具有不同质量的多个SI。我们对生成的稀疏信号以及来自多视图图像数据库的多视图稀疏源进行相关的特征直方图实验性地执行了我们的算法。结果表明,RAMSIA的性能明显优于传统CS和具有单个SI的CS,并且具有较高SI数量的RAMSIA的收益要高于具有较小SI数量的RAMSIA。
展开▼