首页> 外文OA文献 >Multi-Instrument Observations of a Geomagnetic Storm and its Effects on the Arctic Ionosphere: A Case Study of the 19 February 2014 Storm:Observations of a Geomagnetic Storm
【2h】

Multi-Instrument Observations of a Geomagnetic Storm and its Effects on the Arctic Ionosphere: A Case Study of the 19 February 2014 Storm:Observations of a Geomagnetic Storm

机译:地磁暴的多仪器观测及其对北极电离层的影响:2014年2月19日风暴的案例研究:地磁暴的观测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a multi-instrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time (Dst) index that year. The geomagnetic storm was the result of two powerful Earth-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar-cap. We employed GNSS networks, geomagnetic observatories, and a specific ionosonde station in Greenland. We complemented the approach with spaceborne measurements in order to map the state and variability of the Arctic ionosphere. In situ observations from the Canadian CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer) satellite's ion mass spectrometer were used to derive ion flow data from the polar cap topside ionosphere during the event. Our research specifically found that, (1) Thermospheric O/N2 measurements demonstrated significantly lower values over the Greenland sector than prior to the storm-time. (2) An increased ion flow in the topside ionosphere was observed during the negative storm phase. (3) Negative storm phase was a direct consequence of energy input into the polar cap. (4) Polar patch formation was significantly decreased during the negative storm phase. This paper analyzes the physical processes that can be responsible for this ionospheric storm development in the northern high-latitudes. We conclude that ionospheric heating due to the CME's energy input caused changes in the polar atmosphere resulting in Ne upwelling, which was the major factor in high-latitude ionosphere dynamics for this storm.
机译:我们提出了一种用于2014年2月19日高度复杂的多相地磁风暴的北极电离层分析的多仪器方法,该方法对当年的干扰风暴时间(Dst)指数影响最大。地磁风暴是两次强大的地球定向日冕物质抛射(CME)的结果。它在格陵兰岛上产生了强烈而持久的负风暴相,极地极地能量输入占主导地位。我们使用了GNSS网络,地磁观测站以及格陵兰岛的特定电离探空仪站。我们通过星载测量对方法进行了补充,以绘制北极电离层的状态和变化图。活动期间,使用了来自加拿大CASSIOPE(CAScade,Smallsat和IOnosphere Polar Explorer)卫星的离子质谱仪进行的现场观测,从极帽顶侧电离层获得了离子流数据。我们的研究特别发现,(1)热球O / N2测量结果表明,格陵兰地区的值显着低于风暴之前。 (2)在负暴风期期间,观测到顶侧电离层中的离子流增加。 (3)负风暴期是能量输入极地帽的直接结果。 (4)在负风暴阶段,极地斑块的形成明显减少。本文分析了可能导致北部高纬度电离层风暴发展的物理过程。我们得出的结论是,由于CME的能量输入而导致的电离层加热导致极地大气发生变化,导致Ne上升,这是造成该风暴的高纬度电离层动力学的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号