首页> 外文OA文献 >Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants
【2h】

Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

机译:使用Δpfk突变体检查大肠杆菌糖酵解途径,分解代谢物抑制和代谢物通道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. Results: Overexpression of edd and eda into enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP by phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the glycolytic pathways, a potentially overlooked mechanism for regulating glucose catabolism and coutilization of other substrates. The presence of channeling in native pathways, if proven true, would affect synthetic biology applications and metabolic modeling.
机译:背景:糖酵解将葡萄糖分解为细胞的基本结构单元和ATP / NAD(P)H,在其生长和生物生产中发挥着核心作用。在糖酵解途径中,Entem Doudoroff途径(EDP)是热力学更有利的途径,其酶促步骤比Embden-Meyerhof-Parnas途径(EMPP)或氧化性戊糖磷酸途径(OPPP)少。但是,大肠杆菌不会将其天然EDP用于葡萄糖代谢。结果:edd和eda过表达增强EDP活性导致通过EDP的通量仅发生很小的变化(约20%的糖酵解通量)。通过磷酸果糖激酶I(pfkA)敲除破坏EMPP,增加了通过OPPP(约60%的糖酵解通量)和天然EDP(约14%的糖酵解通量)的通量,而在此ΔpfkA突变体中过表达edd和eda指示约70%的糖酵解通过EDP的流量。通过pfkA缺失引起的EMPP下调显着降低了生长速率,而ΔpfkA突变体中的EDP过表达由于代谢负担而未能提高其生长速率。但是,糖酵解策略的重组确实降低了葡萄糖分解代谢物的阻遏作用。葡萄糖培养基中的ΔpfkA突变体能够通过柠檬酸循环和糖异生而代谢乙酸盐,而ΔpfkA突变体中的EDP过表达抑制了乙酸通向糖异生的作用。此外,在ΔpfkA突变体中进行的13C脉冲实验显示,糖酵解中间体中的标签动力学不连续,可能暗示了代谢产物的通道化(糖酵解中的代谢物从一种酶传递到另一种酶,而没有在胞质溶胶介质中完全平衡)。结论:我们设计重新分配其天然糖酵解通量。用EDP代替EMPP并不能提高葡萄糖利用率或生物量的增长,但可以减轻分解代谢物的抑制。更重要的是,我们的研究结果支持了糖酵解途径中通道化的假设,这是一种可能被忽略的调节葡萄糖分解代谢和其他底物共同利用的机制。如果被证明是正确的,天然途径中通道的存在将影响合成生物学的应用和代谢模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号