首页> 外文OA文献 >Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers
【2h】

Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers

机译:用于高波特率奈奎斯特 - WDm收发器的光学和电气频谱整形

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We discuss the benefits and limitations of optical time-division multiplexing 22 (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for 23 wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown 24 how the modulated OTDM spectrum bandwidth is related to the optical comb parameters 25 and the pulse shaping of the modulating waveforms in the electrical domain. Such de- 26 pendence may result in broadening of the modulated spectra, which can degrade the 27 performance of Nyquist-WDM systems due to interchannel crosstalk penalties. However, 28 it is shown and experimentally demonstrated that the same technique of optical pulse 29 train generation can be allied with digital pulse shaping to improve the confinement of 30 the modulated spectrum toward the Nyquist limit independently of the number of OTDM 31 tributaries used. To investigate the benefits of the proposed approach, we demonstrate 32 the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses 33 and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist- 34 OTDM dual-polarization quadrature phase-shift keying (QPSK) channels is demon- 35 strated over a dispersion uncompensated link up to 640 km, with full-field coherent 36 detection at the receiver. It is shown that such a design strategy effectively improves the 37 spectral confinement of the modulated OTDM signal, providing a minimum intercarrier 38 crosstalk penalty of 1.5 dB in baud-rate-spaced Nyquist-WDM systems.
机译:我们基于高波特率下23个波分复用(WDM)传输的正弦脉冲的周期性列的光学生成,讨论了光时分复用22(OTDM)技术的优点和局限性。图24示出了调制的OTDM频谱带宽如何与光梳参数25和电域中的调制波形的脉冲整形相关。这样的26度下降可能会导致调制频谱变宽,由于通道间串扰损失,这可能会使Nyquist-WDM系统的27个性能下降。但是,在图28中显示并通过实验证明,可以将相同的光脉冲29列生成技术与数字脉冲整形结合起来,以独立于所用OTDM 31支路的数量,将调制频谱的约束范围限制在30奈奎斯特极限。为了研究所提出方法的好处,我们展示了32个基于Sinc脉冲的周期序列33和电频谱整形的第一个WDM Nyquist-OTDM信号生成。五个35. 112.5 Gbd Nyquist- 34 OTDM双极化正交相移键控(QPSK)通道的直线传输在不超过640 km的色散无补偿链路上进行了演示,并在接收器处进行了全场相干36检测。结果表明,这种设计策略有效地改善了调制OTDM信号的37个频谱限制,在波特率间隔Nyquist-WDM系统中提供了1.5 dB的最小载波间38串扰损失。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号