首页> 外文OA文献 >Distributed Model Predictive Control of A Wind Farm for Optimal Active Power Control:Part I: Clustering based Wind Turbine Model Linearization
【2h】

Distributed Model Predictive Control of A Wind Farm for Optimal Active Power Control:Part I: Clustering based Wind Turbine Model Linearization

机译:用于最优有功功率控制的风电场分布式模型预测控制:第一部分:基于聚类的风力机模型线性化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a dynamic discrete-time Piece- Wise Affine (PWA) model of a wind turbine for the optimal active power control of a wind farm. The control objectives include both the power reference tracking from the system operator and the wind turbine mechanical load minimization. Instead of partial linearization of the wind turbine model at selected operating points, the nonlinearities of the wind turbine model are represented by a piece-wise static function based on the wind turbine system inputs and state variables. The nonlinearity identification is based on the clustering-based algorithm, which combines the clustering, linear identification and pattern recognition techniques. The developed model, consisting of 47 affine dynamics, is verified by the comparison with a widely-used nonlinear wind turbine model. It can be used as a predictive model for the Model Predictive Control (MPC) or other advanced optimal control applications of a wind farm.
机译:本文提出了一种用于风力发电场最优有功功率控制的动态离散时间分段智能仿射(PWA)模型。控制目标既包括来自系统操作员的功率参考跟踪,也包括风力发电机组机械负载的最小化。代替在选定的工作点上对风力涡轮机模型进行部分线性化,该风力涡轮机模型的非线性由基于风力涡轮机系统输入和状态变量的分段静态函数表示。非线性识别基于基于聚类的算法,该算法结合了聚类,线性识别和模式识别技术。通过与广泛使用的非线性风力涡轮机模型进行比较,验证了由47个仿射动力学组成的开发模型。它可以用作模型预测控制(MPC)或风电场的其他高级最优控制应用的预测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号