首页> 外文OA文献 >How Many Separable Sources? Model Selection In Independent Components Analysis
【2h】

How Many Separable Sources? Model Selection In Independent Components Analysis

机译:有多少可分离的来源?独立成分分析中的模型选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher’s iris data set and Howells’ craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian.
机译:与仅由非高斯源组成的混合物不同,不能使用基于高阶统计量和独立观测值的标准独立成分分析方法来分离包含两个或多个高斯成分的混合物。此处描述的混合独立成分分析/主成分分析(混合ICA / PCA)模型在独立成分分析模型中容纳一个或多个高斯成分,并使用主成分分析来表征此不可分割的高斯子空间的贡献。然后可以使用信息论从具有不同数量高斯分量的潜在模型类别中进行选择。根据模拟研究,即使有大量观察结果,Akaike信息准则所依据的假设和近似值也不适用。交叉验证是一种合适的选择,尽管计算量大,但模型选择却很复杂。使用Fisher的虹膜数据集和Howells的颅骨数据集说明了该算法的应用。混合ICA / PCA在科学调查的任何领域都有潜在的兴趣,在这些领域中,盲目分离的非高斯源的真实性可能会受到质疑。 Akaike信息准则在模型选择方面的失败也与传统的独立成分分析(其中所有来源均假定为非高斯的)相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号